Дипломная работа: Оценка периметра многоугольника заданного диаметра
Определение 1.1.16. Наименьшую ширину выпуклой кривой К называют шириной К .
Определение 1.1.17. Совокупность лучей, исходящих из одной точки О ,называется выпуклой , если она содержит все лучи, проходящие внутри угла, меньшего 180°, образованного любыми двумя лучами совокупности, не составляющими продолжение один другого.
Теорема 1.1.2. Выпуклая совокупность лучей может быть одним лучом, парой лучей, являющихся продолжением один другого, углом, меньшим 180°, полуплоскостью либо целой плоскостью (рис. 1.1.11).
Рис. 1.1.11
Доказательство .
В самом деле, из определения выпуклой совокупности лучей непосредственно следует, что пересечение такой совокупности с любой прямой, не проходящей через точку О ,выпукло. Рассматривая пересечения выпуклой совокупности лучей, с двумя параллельными прямыми, расположенными по разные стороны от точки О ,и учитывая, что каждое из этих пересечений может совсем не содержать точек, быть единственной точкой, отрезком, лучом или всей прямой, нетрудно выяснить, что выпуклая совокупность лучей может быть только одного из перечисленных выше видов; все возможные здесь случаи приведены на рис. 1.1.12. [8, 21]
Рис. 1.1.12
Теорема доказана. [8, 22]
Пусть Ф — некоторая выпуклая фигура и О — ее граничная точка. Проведем из точки О лучи, соединяющие ее с каждой точкой (внутренней или граничной) фигуры Ф (рис. 1.1.13).
Рис. 1.1.13
Мы получим выпуклую совокупность лучей. В самом деле, если ОА и ОВ — два луча данной совокупности (А и В — точки фигуры Ф), то все лучи, расположенные внутри острого угла АОВ ,пересекают отрезок АВ ,целиком состоящий из точек фигуры Ф, и, следовательно, принадлежат данной совокупности. [8, 22]
Получившаяся совокупность лучей не может быть единственным лучом или парой лучей, составляющих продолжение один другого, так как считается, что фигура не одномерна.
Нетрудно так же показать, что эта совокупность лучей не может заполнить всю плоскость. Действительно, если лучи заполняют плоскость, то среди них можно выбрать две такие пары лучей ОА и ОВ , ОС и О D ,что лучи каждой пары, составляют продолжение один другого. Пусть А , В , С ,D —точки выпуклой фигуры, лежащие на этих лучах (рис. 1.1.14). Фигура Ф вместе с точками А , В ,С должна содержать весь треугольник АВС (см. рис. 1.1.14) и вместе с точками А , В ,D —весь треугольник АВ D ,т. е. она должна содержать весь выпуклый четырехугольник АСВ D , для которого точка О является внутренней. Таким образом, в этом случае точка О не может быть граничной точкой фигуры Ф. [8, 23]
Рис. 1.1.14
Следовательно, рассматриваемая совокупность лучей будет либо полуплоскостью, либо углом, меньшим 180°. В первом случае (рис. 1.1.15) точка О называется обыкновенной точкой выпуклой кривой К , ограничивающей фигуру Ф.
Прямая Г, ограничивающая полуплоскость, является опорной прямой фигуры Ф (все точки Ф лежат на лучах нашей совокупности, а следовательно, с одной стороны от прямой Г).
Рис. 1.1.15 Рис. 1.1.16
При этом прямая Г является единственной опорной прямой фигуры Ф в точке О ,так как по обе стороны от каждой другой прямой l , проходящей через О ,есть лучи нашей совокупности, а следовательно, и точки фигуры Ф (рис. 1.1.15). Такая опорная прямая Г фигуры Ф, ограничивающая полуплоскость, называется касательной в точке О квыпуклой кривой К .[7, 188]
Во втором случае, когда выпуклая совокупность лучей является углом, меньшим 180°, точка О называется угловой точкой выпуклой кривой К ,ограничивающей фигуру Ф (рис. 1.1.16).
Все точки фигуры Ф заключены в этом случае внутри угла МО N ;поэтому всякая прямая l , проходящая внутри угла МО N ’ ,смежного с углом МО N ,будет опорной прямой фигуры Ф. В частности, опорными будут и лучи ОМ , О N ,которые называются полукасательным в точке О к выпуклой кривой К , ограничивающей фигуру Ф. [1, 40]
Определение 1.1.18. Угол MON = называется внутренним углом (или просто углом) выпуклой кривой К или выпуклой фигуры Ф в точке О , а угол МО N ’ = 180° -называется внешним углом кривой К или выпуклой фигуры Ф. [7, 189]
Согласно этому определению все точки выпуклого многоугольника, кроме вершин, являются обыкновенными, причем касательными в этих точках являются стороны многоугольника. Вершины выпуклого многоугольника являются его угловыми точками, а определенные выше углы совпадают с углами многоугольника в обычном смысле (рис. 1.1.17).
Рис. 1.1.17