Дипломная работа: Применение алгоритмического метода при изучении неравенств

Специальное обучение процессам распознавания, преобразования и выяснения возможностей их алгоритмизации выступает, поэтому как важная задача, решение которой имеет существенное значение для практики и теории обучения.

§ 6 Этапы изучения алгоритма в школе.

Следует различать 2 смысла, в котором может употребляться выражение «алгоритмизация обучения».

1. Под алгоритмизацией обучения понимают алгоритмизацию деятельности учителя; составление и использование алгоритмов обучения.

2. Алгоритмизация деятельности учащихся, то есть не что иное, как обучение алгоритмам.

Открытие алгоритмов решения математических задач привело к коренному изменению в практике обучения математике: алгоритмам стали учить, и это во много раз облегчило и ускорило овладение этим предметом. В то же время учебный процесс ни в коем случае не должен и не может быть сведён только к обучению алгоритмам.

В обучении учащихся алгоритмам можно идти разными путями:

1) Давать учащимся алгоритм в готовом виде. Такой путь не является лучшим, но позволяет экономить время.

2) Гораздо более ценно, когда ученик открывает соответствующие алгоритмы сам или с помощью учителя.

3) Подбор учителем таких упражнений и задач в ходе решения, которых у учащихся будут формироваться нужные системы операций.

Формирование алгоритмического процесса идёт более успешно, когда эти различные пути соединяются.

При формировании алгоритма выделяют три основных этапа [26]:

I . Введение алгоритма. Этот этап подразумевает следующее:

1) Актуализация знаний, необходимых для введения и обоснования алгоритма.

2) Открытие алгоритма учащимися под руководством учителя.

3) Формулировка алгоритма.

II .Усвоение

Отработка отдельных операций, входящих в алгоритм и усвоение их последовательности.

III .Применение алгоритма.

Отработка алгоритма в знакомой и незнакомой ситуациях.

Выделенные этапы будут проиллюстрированы во второй главе работы.

Таким образом, применение алгоритмического метода при обучении математике устраняет главный недостаток учебников: процесс мыслительной деятельности расчленяется на определённое число достаточно простых элементарных операций, усвоения и понимания которых для учащихся будет менее трудоёмко.

Часть 2

1 Особенности изучения темы «Неравенства» в школьном курсе математики

Материал, связанный с неравенствами, составляет значительную часть школьного курса математики. Неравенства используются в различных разделах математики, при решении важных прикладных задач.

Неравенства сами по себе представляют интерес для изучения, так как именно с их помощью на символьном языке записываются важные задачи познания реальной действительности. Как в самой математике, так и в её приложениях с неравенствами приходится сталкиваться не менее часто, чем с уравнениями. Тема “Неравенства” связана со всеми темами курса алгебры. Например, неравенства используются при изучении свойств функции (нахождение промежутков знакопостоянства функции, определение монотонности и др.)

До прихода в школу дети приобретают опыт в обращении с понятиями «больше», «меньше», «не равны». Поэтому пропедевтическое изучение неравенств должно осуществляться совместно с изучением уравнений.

С соотношениями «больше», «меньше» между числами и знаками этих отношений дети знакомятся уже в 1 классе при изучении чисел первого десятка. В начальной школе дети должны научиться сравнивать уже простейшие числовые выражения, например, такие как: а+3 и а+1.

В начальной школе начинается и решение простейших неравенств, хотя термины «решение неравенства» и «решить неравенство» ещё не вводится. Приведём пример задания, предлагаемого в начальной школе.

Записать несколько значений букв, при которых верно неравенство х<9.

В 5 классе изучается сравнение натуральных, десятичных дробей.

К-во Просмотров: 399
Бесплатно скачать Дипломная работа: Применение алгоритмического метода при изучении неравенств