Дипломная работа: Расчёт и проектирование замкнутой системы воздушно-динамического рулевого привода летательного

5.3.5 Пожарная безопасность

5.4 Охрана окружающей среды

5.5 Выводы

Заключение

Список использованной литературы


Введение

В настоящее время к разработке приводов для малогабаритных управляемых ракет (МУР) предъявляются все более жесткие требования по техническим и эксплуатационным характеристикам. Поэтому процесс создания перспективных МУР должен основываться не только на усовершенствовании ранее разработанных конструкций и схем реализации приводов, но и на поиске новых технических решений, отличающихся от традиционных и дающих очередной скачок в развитии данного вида техники. Таким принципиально новым решением оказалось создание и использование так называемых воздушно-динамических рулевых приводов (ВДРП).

Ранее применяемые рулевые привода традиционной конструкции со специальным источником питания обладают следующими недостатками: во-первых, они обеспечивают мощность источников на уровне максимально потребной, что необходимо только лишь на определенном участке полета; во-вторых, при повышении дальности и времени полета масса источника питания увеличивается. Ужесточающиеся массогабаритные характеристики не позволяют реализовать традиционные привода со специальными системами согласования мощности привода с мощностью, расходуемой на управление. Поэтому рациональным решением явился отказ от специального источника питания и использование для перемещения рулевых органов энергии движения ракеты в газовой среде, т.е. использование энергии обтекающего корпус ракеты воздушного потока.

Основой данного технического решения является процесс трансформации энергии двигательной установки, сообщающей ракете кинетическую энергию движения. В результате движения на корпусе ракеты возникает распределенное поле давлений, определяющее силу ее лобового сопротивления в обтекающем ракету потоке воздуха. Располагая устройства забора и сброса воздуха на корпусе в зонах соответственно повышенного или пониженного давления, формируют рабочий поток определенной мощности, при этом в соответствии с законом сохранения энергии возрастает коэффициент лобового сопротивления. Последнее, при использовании воздушно-динамических рулевых приводов требуется увеличение массы пороховой шашки двигательной установки для сохранения неизменными времени полета и величины конечной скорости. Однако анализ соотношения масс показывает, что эффективность данного технического решения по сравнению с рулевыми приводами, имеющими специальный источник питания, тем выше, чем больше максимальная скорость и время управляемого участка полета по сравнению со временем работы двигательной установки. При этом достигается уменьшение массы пассивных элементов конструкции и повышение технологичности за счет исключения трудоемких элементов конструкции: аккумуляторов давления, трубопроводов и т.п. Отличительной особенностью является то, что он функционирует практически все время, пока движется ракета, а использование единого воздушного потока, нагружающего рулевые органы воздушно-динамических рулевых приводов и одновременно являющегося энергоносителем для сохранения неизменности функциональных характеристик по времени полета. Практическая реализация воздушно динамических рулевых приводов с различными типами силовых систем показала их значительное превосходство по функциональным, массогабаритным и техническо-технологическим характеристикам над приводами традиционной конструкции. Поэтому в настоящее время актуальной является проблема оснащения вновь разрабатываемых ракет приводами воздушно-динамического типа, а значит и разработки эффективных методик и алгоритмов их проектирования.


1. ОСНОВНАЯ ЧАСТЬ

Управление летательным аппаратом (ЛА) является важнейшей научной и практической проблемой современного самолето- и ракетостроения.

Для обеспечения полета ЛА по требуемой траектории применяется совокупность различных технических средств, представляющая собой систему управления.

По функциональному назначению входящие в систему управления ЛА устройства можно разбить на три группы:

1) устройства формирования управляющего воздействия с сигнала управления;

2) органы управления, которые создают управляющие усилия;

3) рулевые приводы, приводящие органы управления в действие в соответствии с управляющим воздействием.

Так как данный дипломный проект посвящен расчёту и проектированию замкнутой системы рулевого привода, рассмотрим более подробно 3-тью группу устройств.

Рулевые приводы осуществляют в системе управления функциональную взаимосвязь между устройствами первой и второй групп. Поэтому наряду с функциональными элементами, обеспечивающими создание силового воздействия на органы управления (источники питания, кинематически связанные с органами управления исполнительные двигатели, элементы энергетических магистралей), рулевые приводы включают функциональные элементы, которые устанавливают соответствие этого силового сигнала формируемому в системе управления управляющему сигналу (преобразователи и усилители электрических сигналов, электромеханические преобразователи, различного вида датчики).

Для конкретизации областей исследования задач, стоящих при разработке рулевых приводов, в их составе выделяют силовую и управляющую системы. Силовая система объединяет функциональные элементы рулевого привода, которые непосредственно участвуют в преобразовании энергии источника питания в механическую работу, связанную с перемещением позиционно нагруженных органов управления.

Управляющую систему составляют функциональные элементы рулевого привода, которые обеспечивают изменение регулируемой величины (координаты положения органов управления) по заданному или выработанному в процессе полета ЛА закону управления.

Структура, характеристики и конструкция рулевого привода определяются типом летательного аппарата. В данном дипломном проекте рассматривается рулевой привод для малогабаритных ЛА, полет которых происходит в плотных слоях атмосферы. Такие рулевые приводы осуществляют перемещение, как правило, поворотных аэродинамических рулей ЛА и характеризуются высоким быстродействием, способностью развивать значительные усилия при низкой массе и малых габаритах конструкции. Их энергетические и габаритно-массовые характеристики существенно зависят от вида используемой энергии.

Бурное развитие ЛА в пятидесятых годах заставило применять пневмопривод с воздушным аккумулятором давления в системах управления ЛА из-за того, что он был наиболее дешевым, простым и надежным рулевым механизмом.

В шестидесятых годах получили распространение рулевой привод на горячем газе, широко применяемый и в настоящее время. Переход от воздушного аккумулятора давления в системах рулевых приводов, занимающего значительный объем в ЛА, к малогабаритному и простому в изготовлении пороховому генератору газа позволил улучшить габаритно-массовые и эксплутационные характеристики рулевых приводов.

Создание в семидесятых годах рулевого привода без бортового источника питания – воздушно-динамического – положило начало новому этапу совершенствования рулевых приводов малогабаритных ЛА.

Следует также упомянуть о существовании электромагнитных рулевых приводов, в которых управления лопастями происходит напрямую силовым электромагнитом, напитываемым от аккумуляторной батареи. Однако они также не получили широкого применения вследствие малой мощности и большого веса источника питания электромагнита.

1.1 Классификация приводов

Приводы лопастей предназначены для преобразования электрических сигналов управления в механическое перемещение лопастей, жестко связанных с подвижными частями исполнительного двигателя.

Исполнительный двигатель преодолевает при этом действующие на лопасть шарнирные нагрузки, обеспечивая необходимую скорость и необходимое ускорение при обработке заданных выходных сигналов с требуемой динамической точностью.

На базе уже существующих конструкций приводы могут быть классифицированы:

1) по типу силовой системы:

К-во Просмотров: 595
Бесплатно скачать Дипломная работа: Расчёт и проектирование замкнутой системы воздушно-динамического рулевого привода летательного