Дипломная работа: Рішення рівнянь й нерівностей з модулем

Відповідь. .

Як не дивно, але досить, щоб позбутися від знака модуля в будь-яких нерівностях.

Приклад Вирішити нерівність

Рішення.


Відповідь. .

Приклад Вирішити нерівність

Рішення. Щодо будь-якого модуля дана нерівність має вигляд . Тому перебравши всі комбінації знаків двох підмодульних виражень, маємо

Відповідь. .

Приклад При яких значеннях параметра нерівність


виконується при всіх значеннях ?

Рішення. Вихідне рівняння рівносильне системі:

Виконання для всіх вихідної нерівності рівносильне виконанню для всіх нерівностей останньої системи. А це рівносильне тому, що дискримінанти всіх чотирьох квадратних тричленів непозитивні:

Відповідь. .

Приклад Знайти всі значення параметра , при кожному з яких число цілозчисленних рішень нерівності

максимально.

Рішення. Тому що

те вихідне рівняння рівносильне системі:


К-во Просмотров: 312
Бесплатно скачать Дипломная работа: Рішення рівнянь й нерівностей з модулем