Дипломная работа: Символ "О" - асимптотический анализ
Приложения символа О можно встретить в разных областях математики, а также и в физике. Например, в книге Панченкова А.Н. «Асимптотические методы в экстремальных задачах механики» рассматривается применение асимптотических методов в решении задач аэродинамики.
Цель дипломной работы:
изучить понятие «Символ О » и показать его применения.
Задачи:
1. Изучить понятие «Символ О », дать определение.
2. Изучить и доказать основные соотношения.
3. Показать применение символа О при решении задач.
4. Найти применение символа О в различных областях математики.
На основании поставленных целей и задач квалификационная работа разбита на две главы.
Глава 1 «Символ О » состоит из трех параграфов. В первом параграфе рассматриваются основные определения, приводятся примеры; во втором – формулируются утверждения, приводятся их доказательства; третий параграф посвящен решению задач.
Глава 2 «Приложения символа О » освещает применение символа О , а именно, при решении трансцендентных уравнений, при вычислении интегралов, при нахождении суммы рядов.
Глава 1. Символ О.
§1. Основные определения, примеры
Определение 1:
f (n ) = O (g (n )) для всех n ÎN (1.1.1)
означает, что существует такая константа С , что
для всех n ÎN ; (1.1.2)
а если обозначение O (g (n )) использовано внутри формулы, то оно обозначает функцию f (n ), удовлетворяющую (1.1.2). Значения функции f (n ) неизвестны, но мы знаем, что они не слишком велики.
Символ «О » включает неопределенную константу С , каждое вхождение О может подразумевать различные С , но каждая из этих констант не зависит от n .
Пример 1: мы знаем, что сумма квадратов первых n натуральных чисел равна
n = .
Можно записать n = О (n 3 ),
так как для всех целых n . Можно получить более точную формулу
n = О (n 2 ), так как
для всех целых n . Можно также небрежно отбросить часть информации и записать n = О (n 10 ).
Определение О не заставляет нас давать наилучшую оценку.
Рассмотрим пример, когда переменная n – не целочисленная.
Пример 2: , где х – вещественное число.
Здесь уже нельзя сказать, что S (x ) = O (x 3 ), так как отношение неограниченно растет при х ®0. Нельзя также сказать, что S (x ) = O (x ), т.к. отношение неограниченно растет, когда х стремится к бесконечности. Значит, мы не можем использовать символ «О » для оценки S (x ).
Эта дилемма разрешается благодаря тому, что на переменные, используемые с О , обычно накладываются какие-либо ограничения. Если, например, мы поставим условие, что , или что , где e - произвольная положительная константа, или что х – целое число, то мы сможем записать S (x ) = O (x 3 ). Если же наложено условие или , где с – произвольная положительная константа, то в этом случае S (x ) = O (x ). «О большое» зависит от контекста, от ограничений на используемые переменные.
Эти ограничения часто задаются в виде предельных соотношений.
Определение 2: соотношение f (n ) = O (g (n )) при n ®¥ означает, что существуют две константы С и n 0 , такие, что
при всех n ³n 0 . (1.1.3)