Дипломная работа: Систематичний відбір
.
Раніше було показано, що
.
Отже маємо
.
Теорема доведена.
1.4 Популяції з лінійним трендом
Якщо популяція містить тільки лінійний тренд, як показано на рис.1.4.1, то характер результатів уявити собі досить просто. З рис. 1.4.1 видно, що та (при вибірці з однією одиницею із кожної страти) будуть менше, ніж . Крім того, буде більше, ніж , оскільки, якщо в деякій страті значення спостереження менше середнього для цієї страти, то при систематичному відборі значення спостереження буде менше в усіх інших стратах, в той час, як при випадковому стратифікованому відборі помилки всередині страт можуть взаємно знищуватись.
Рис. 1.4.1. Систематичний відбір із популяцій з лінійним трендом: - систематична вибірка, - стратифікована вибірка
Для теоретичної перевірки цих результатів достатньо розглянути випадок, коли , . Маємо
; ; . (1.4.1)
Дисперсія сукупності, , дорівнює:
. (1.4.2)
Отже, дисперсія середнього для простої випадкової вибірки дорівнює:
. (1.4.3)
Для того, щоб знайти дисперсію всередині страт, , достатньо лише підставити у формулу (1.4.2) замість . Це дає
(1.4.4)
При систематичному відборі середнє значення для другої вибірки перевищує середнє для першої на 1; середнє значення для третьої вибірки перевищує середнє для другої на 1 і т.д. Тому при обчисленні дисперсії середні можна замінити числами . Отже, виходячи з (1.4.2), використовуючи
; ,
Отримаємо