Дипломная работа: Структура некоторых числовых множеств
Введение
В 1870-х годах немецкий математик Георг Кантор (1845-1918) создал теорию множеств — исключительно мощное и важное математическое учение, оказавшее огромное влияние на развитие современной математики. Теория множеств не только явилась фундаментом целого ряда новых математических дисциплин, но и оказала глубокое влияние на понимание самого предмета математики. Помимо прочего в канторовской теории множеств впервые были развиты конструктивные подходы к анализу проблемы бесконечности, более двух тысяч лет являвшейся лишь предметом филологических упражнений философов.
Теория множеств изучает общие свойства множеств, преимущественно бесконечных. Понятие множества простейшее математическое понятие, оно не поддается определению, ибо определить понятие — значит найти такое родовое понятие, в которое данное понятие входит в качестве вида, но множество — это, пожалуй, самое широкое понятие математики и логики.
Однако Кантор попытался определить данное понятие так: «Под множеством, - разъяснял Георг Кантор, - я понимаю вообще всякое многое, которое можно мыслить как единое, то есть всякую совокупность определенных элементов, которая может быть связана в одно целое с помощью некоторого закона...» 1 . Но эта концепция привела к парадоксам, в частности, к парадоксу Рассела, и данная теория стала называться наивной теорией множеств.
Парадокс Рассела — открытая в 1903 году Бертраном Расселом и позднее независимо переоткрытая Эрнестом Цермело теоретико-множественная антиномия, демонстрирующая противоречивость наивной теории множеств Г. Кантора. Антиномия Рассела формулируется следующим образом: Пусть K — множество всех множеств, которые не содержат себя в качестве своего элемента. Содержит ли K самого себя в качестве элемента? Если да, то, по определению K, оно не должно быть элементом K — противоречие. Если нет — то, по определению K, оно должно быть элементом множеств, включающихся в К — вновь противоречие.
После этого теория множеств была аксиоматизирована. На сегодняшний день множество определяется как модель, удовлетворяющая ряду аксиом (так называемая аксиоматика Цермело – Френкеля).
Множества могут состоять из самых различных элементов. Именно этим объясняется чрезвычайная широта теории множеств и ее приложимость к самым разным областям знания.
Для математики особо важную роль играют множества, составленные из математических объектов, в частности числовые множества, о которых и пойдет речь в данной работе.
При написании этой дипломной работы мы задавались целью - изучить исходные понятия и важнейшие теоремы теории множеств, а также на основании данного материала, решить ряд нестандартных задач по выявлению структуры некоторых числовых множеств.
Данная работа состоит из трех глав: «Мощности бесконечных множеств», «Точечные множества», «Решение некоторых задач».
В первой главе приводится краткое историческое описание становления теории множетсв, определяются основные понятия, такие как мощность, счетное множество, континуальное множество, с которыми нужно ознакомиться для дальнейшей работы. Устанавливаются связи между ними и доказываются основные теоремы о мощностях бесконечных множеств. В конце главы рассматривается важная теорема Шредера – Бернштейна, позволяющая проводить сравнения мощностей бесконечных множеств.
Во второй главе рассматриваются только числовые множества, т.е. множества точек числовой прямой. Вводятся основные понятия, такие как замкнутое множество, открытое множество, совершенное множество, рассматривается структура таких множеств, формулируются и доказываются основные теоремы, на основании которых, в итоге, делается важный вывод о мощности замкнутого множества.
Третья глава посвящена детальному и подробному решению ряда интересных задач (теорем) по определению структуры некоторых бесконечных числовых множеств. Также приведена задача, решение которой на первый взгляд может показаться верным, но при подробном анализе представленного доказательства можно заметить, что в решении содержится ошибочное предположение, в результате чего данное доказательство теряет свою силу. Строгое решение этой задачи также приведено в работе.
Глава 1. Мощности бесконечных множеств
§ 1. К истории становления теории множеств
С самого зарождения математической науки как самостоятельной отрасли знания и на протяжении более чем двух тысячелетий математики занимались поисками истины и добились на этом пути выдающихся успехов. Шаг за шагом древние греки, а вслед за ними и представители других цивилизаций открывали математические законы, полагая, что план, по которому построена вселенная, имеет математический характер. Необозримое множество теорем о числах и фигурах, казалось, служило неисчерпаемым источником абсолютного знания, которое никогда и никем не может быть поколеблено [4; 19]. Однако по мере развития математики связь с реальным миром становится все менее ощутимой, встает вопрос о логическом обосновании математики.
В конце 19 века на передний план выступает проблема доказательства непротиворечивости математики. Движение за аксиоматизацию математики в этот период заставило математиков понять, сколь глубокая пропасть отделяет математику от реального мира. Каждая аксиоматическая система содержит неопределяемые понятия, свойства которых задаются только аксиомами. Новой теорией, которая привела к противоречиям и открыла многим глаза на противоречия, существовавшие в более старых областях математики, была теория бесконечных множеств. Первые шаги в изучении теории числовых множеств связаны с именем Георг Кантор (1845 – 1918). В 1873 г. Кантор поставил задачу классифицировать бесконечные множества. Введенные Кантором определения позволяли сравнивать два бесконечных множества по мощности. Основная идея Кантора сводилась к установлению взаимнооднозначного соответствия между множествами.
Идея взаимнооднозначного соответствия привела Кантора к неожиданному результату: он показал, что можно установить взаимнооднозначное соответствие между точками прямой и точками плоскости. Следуя принципу взаимнооднозначного соответствия, Кантор установил для бесконечных множеств отношение эквивалентности, или равенства («равномощности» двух множеств). Множество натуральных чисел и множества, которые можно поставить во взаимнооднозначное соответствие с этим множеством, содержат одинаковое число элементов, которое Кантор обозначил символом . Так как множество всех вещественных чисел больше по мощности множества натуральных чисел, Кантор обозначил его мощность новым символом – с. Возник вопрос – существует ли множество промежуточной мощности (утверждение о том, что такого множества не существует, носит название континуум гипотезы). В последствии было доказано, что в системе аксиом Цермело – Френкеля утверждение о существовании промежуточной мощности не может быть ни доказано, ни опровергнуто.
Когда Кантор в 70-х годах 19 века приступил к созданию теории бесконечных множеств и еще много лет спустя, эта теория находилась на периферии математической науки. Но к началу 20 века канторовская теория множеств нашла широкое применение во многих областях математики. Кантор и Рихард Дедекинд понимали, сколь важна теория множеств для обоснования теории целых чисел, для анализа понятий линии и размерности и даже для обоснований математики. Другие математики, в частности Эмиль Борель и Анри Леон Лебег, к тому времени уже работали над обобщением интеграла, в основу которого была положена канторовская теория множеств. Поэтому, когда сам Кантор обнаружил, что его теория множеств сопряжена с определенными трудностями, это было далеко немаловажным событием. Кантор дал несколько словесных определений множества, но эти определения не отличались строгостью, и теорию множеств в том виде, как ее изложил Кантор, нередко называют наивной. По мнению многих ученых, тщательный подбор аксиоматической основы должен был избавить теорию множеств от многих проблем и противоречий [8; 135].
Приступая к построению математики на основе теории множеств, можно выбрать ту или иную из возможных исходных позиций. Можно запретить использование гипотезы континуума, но это существенно ограничит круг теорем, доказываемых в рамках системы. Можно поступить иначе и включить в систему аксиом гипотезу континуума или ее отрицание. При этом неизвестно, к каким важным следствиям может привести отрицание гипотезы континуума. Сказанное означает, что существует не одна, а много математик. Теория множеств (рассматриваемая отдельно от остальных оснований математики) может развиваться во многих направлениях. Остановить свой выбор на одном из направлений нелегко, так как в любом случае принятие определенной редакции аксиом имеет свои положительные и отрицательные стороны.
§ 2. Счетные множества
Определение 1. Пусть А и В два множества. Правило, которое каждому элементу а множества А соотносит один и только один элемент множества В, причем каждый элемент оказывается соотнесенным одному и только одному элементу , называется взаимнооднозначным соответствием между множествами А и В.
В этом случае множества А и В называются эквивалентными или же говорят, что эти множества имеют одинаковую мощность. Обозначение
Определение 2. Пусть множество всех натуральных чисел. Всякое множество А, эквивалентное множеству , называется исчислимым, или счетным, или короче имеет мощность .
Теорема 1. Для того чтобы множество А было счетным, необходимо и достаточно, чтобы его можно было перенумеровать, т.е. представить в форме последовательности
Теорема 2. Из всякого бесконечного множества можно выделить счетное подмножество.
Теорема 3. Всякое бесконечное подмножество счетного множества счетно.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--