Дипломная работа: Вивчення нильпотентної довжини кінцевих груп з відомими додаваннями до максимальних підгруп

Нехай - група й нехай

Ясно, що


У розв'язній неодиничній групі підгрупа Фиттинга відмінна від одиничної підгрупи по лемі 1.2. Тому для розв'язної групи існує натуральне таке, що .

Нильпотентною довжиною розв'язної групи називають найменше , для якого . Нильпотентну довжину розв'язної групи позначають через . Таким чином, якщо група розв'язна й , те

Тому побудований ряд нормальний і його фактори нильпотентни.

Ясно, що тоді й тільки тоді, коли група нильпотентна.

Приклад 1.9. .

Непосредсвенно з визначення нильпотентною довжини випливає

Лема 1.10. Нехай - розв'язна група. Тоді:

(1) ;

(2) .

Лема 1.11. (1) Якщо - розв'язна група, то довжина будь-якого нормального ряду групи з нильпотентними факторами не менше, ніж .

(2) Нильпотентна довжина розв'язної групи збігається з довжиною самого короткого нормального ряду з нильпотентними факторами.

Proof. (1) Застосуємо індукцію один по одному групи . Нехай


нормальний ряд групи з нильпотентними факторами. Тому що - нормальна нильпотентна підгрупа групи

К-во Просмотров: 209
Бесплатно скачать Дипломная работа: Вивчення нильпотентної довжини кінцевих груп з відомими додаваннями до максимальних підгруп