Книга: Числовые ряды

Тогда исходный ряд можно представить в виде почленной разности двух сходящихся рядов геометрической прогрессии

Используя формулу (1.8), вычислим суммы соответствующих рядов геометрической прогрессии.

Для первого ряда поэтому

.

Для второго ряда поэтому

Окончательно имеем

.


3. Ряды с положительными членами. Признаки сходимости

Определить сходимость ряда (1.1) и найти его сумму в случае сходимости непосредственно по определению 1.1 как предела последовательности частичных сумм, весьма затруднительно. Поэтому существуют достаточные признаки определения сходится ряд или расходится. В случае его сходимости приближенным значением его суммы с любой степенью точности может служить сумма соответствующего числа первых n членов ряда.

Здесь будем рассматривать ряды (1.1) с положительными (неотрицательными) членами, т. е. ряды, для которых Такие ряды будем называть положительными рядами.

Теорема 3.1. (признак сравнения)

Пусть даны два положительных ряда

, (3.1)

, (3.2)

и выполняются условия для всех n =1,2,…

Тогда: 1) из сходимости ряда (3.2) следует сходимость ряда (3.1);

2) из расходимости ряда (3.1) следует расходимость ряда (3.2).

Доказательство . 1. Пусть ряд (3.2) сходится и его сумма равна В . Последовательность частичных сумм ряда (3.1) является неубывающей ограниченной сверху числом В , т. е.


Тогда в силу свойств таких последовательностей следует, что она имеет конечный предел, т. е. ряд (3.1) сходится.

2. Пусть ряд (3.1) расходится. Тогда, если ряд (3.2) сходится, то в силу доказанного выше пункта 1 сходился бы и исходный ряд, что противоречит нашему условию. Следовательно ряд (3.2) также расходится.

Этот признак удобно применять к определению сходимости рядов, сравнивая их с рядами, сходимость которых уже известна.

Пример 3.1. Исследовать на сходимость ряд

Члены ряда положительны и меньше соответствующих членов сходящегося ряда геометрической прогрессии

т. к. , n =1,2,…

Следовательно, по признаку сравнения исходный ряд также сходится.

К-во Просмотров: 890
Бесплатно скачать Книга: Числовые ряды