Книга: Числовые ряды
Члены данного ряда положительны и больше соответствующих членов расходящегося гармонического ряда
т. к.
Следовательно, по признаку сравнения исходный ряд расходится.
Теорема 3.2. (Предельный признак Даламбера[*] ).
Пусть члены положительного ряда (1.1) таковы, что существует предел
Тогда: 1) при q < 1 ряд (1.1) сходится;
2) при q > 1 ряд (1.1) расходится;
3) при q = 1 о сходимости ряда (1.1) ничего сказать нельзя, необходимы дополнительные исследования.
Замечание : Ряд (1.1) будет расходиться и в том случае, когда
Пример 3.3. Исследовать на сходимость ряд
.
Применим предельный признак Даламбера.
В нашем случае .
Тогда
Следовательно, исходный ряд сходится.
Пример 3.4. Исследовать на сходимость ряд
Применим предельный признак Даламбера:
Следовательно, исходный ряд сходится.
Пример 3.5. Исследовать на сходимость ряд
Применим предельный признак Даламбера: