Книга: Числовые ряды
Следовательно, исходный ряд расходится.
Замечание . Применение предельного признака Даламбера к гармоническому ряду не дает ответа о сходимости этого ряда, т. к. для этого ряда
Теорема 3.3 . (Предельный признак Коши * ).
Пусть члены положительного ряда (1.1) таковы, что существует предел
Тогда: 1) при q < 1 ряд (1.1) сходится;
2) при q > 1 ряд (1.1) расходится;
3) при q = 1 о сходимости ряда (1.1) ничего сказать нельзя, необходимы дополнительные исследования.
Пример 3.6. Исследовать на сходимость ряд
Применим предельный признак Коши:
Следовательно, исходный ряд сходится.
Теорема 3.4 . (Интегральный признак Коши).
Пусть функция f ( x ) непрерывная неотрицательная невозрастающая функция на промежутке
Тогда ряд и несобственный интеграл сходятся или расходятся одновременно .
Пример 3.7. Исследовать на сходимость гармонический ряд
Применим интегральный признак Коши.
В нашем случае функция удовлетворяет условию теоремы 3.4. Исследуем на сходимость несобственный интеграл
Имеем .
Несобственный интеграл расходится, следовательно, исходный гармонический ряд расходится также.
Пример 3.8. Исследовать на сходимость обобщенный гармонический ряд
Функция удовлетворяет условию теоремы 3.4.
Исследуем на сходимость несобственный интеграл
Рассмотрим следующие случаи:
1) пусть Тогда обобщенный гармонический ряд есть гармонический ряд, который расходится, как показано в примере 3.7.