Контрольная работа: 10 способов решения квадратных уравнений

а) Решим уравнение:2 + 7х + 3 = 0.

а = 4, b = 7, с = 3, D = b 2 - 4 ac = 72 - 4 • 4 • 3 = 49 - 48 = 1,

D > 0, два разных корня;

Таким образом, в случае положительного дискриминанта, т.е. при

b 2 - 4 ac >0 , уравнение ах2 + b х + с = 0 имеет два различных корня.

б) Решим уравнение: 2 - 4х + 1 = 0,

а = 4, b = - 4, с = 1, D = b 2 - 4 ac = (-4)2 - 4 • 4 • 1= 16 - 16 = 0,

D = 0, один корень;


Итак, если дискриминант равен нулю, т.е. b 2 - 4 ac = 0 , то уравнение

ах2 + b х + с = 0 имеет единственный корень,

в) Решим уравнение: 2 + 3х + 4 = 0,

а = 2, b = 3, с = 4, D = b 2 - 4 ac = 32 - 4 • 2 • 4 = 9 - 32 = - 13 , D < 0.

Данное уравнение корней не имеет.

Итак, если дискриминант отрицателен, т.е. b 2 - 4 ac < 0 ,

уравнение ах2 + b х + с = 0 не имеет корней.

Формула (1) корней квадратного уравнения ах2 + b х + с = 0 позволяет найти корни любого квадратного уравнения (если они есть), в том числе приведенного и неполного. Словесно формула (1) выражается так: корни квадратного уравнения равны дроби, числитель которой равен второму коэффициенту, взятому с противоположным знаком, плюс минус корень квадратный из квадрата этого коэффициента без учетверенного произведения первого коэффициента на свободный член, а знаменатель есть удвоенный первый коэффициент.

4. СПОСОБ: Решение уравнений с использованием теоремы Виета.

Как известно, приведенное квадратное уравнение имеет вид

х2 + px + c = 0. (1)

Его корни удовлетворяют теореме Виета, которая при а =1 имеет вид

x 1 x 2 = q ,

x 1 + x 2 = - p

Отсюда можно сделать следующие выводы (по коэффициентам p и q можно предсказать знаки корней).

а) Если сводный член q приведенного уравнения (1) положителен (q > 0 ), то уравнение имеет два одинаковых по знаку корня и это зависти от второго коэффициента p . Если р < 0 , то оба корня отрицательны, если р < 0 , то оба корня положительны.

Например,

x 2 – 3 x + 2 = 0; x 1 = 2 иx 2 = 1, так какq = 2 > 0 иp = - 3 < 0;

x 2 + 8 x + 7 = 0; x 1 = - 7 иx 2 = - 1, так какq = 7 > 0 иp = 8 > 0.

К-во Просмотров: 377
Бесплатно скачать Контрольная работа: 10 способов решения квадратных уравнений