Контрольная работа: 10 способов решения квадратных уравнений

x 1 + x 2 = - b / a ,

x 1 x 2 = 1• c / a .

По условию а – b + с = 0, откуда b = а + с. Таким образом,

x1 + x2 = - а + b/a= -1 – c/a,

x1 x2 = - 1• ( - c/a),

т.е. х1 = -1 и х2 = c / a , что м требовалось доказать.

Примеры.

1) Решим уравнение 345х2 – 137х – 208 = 0.

Решение. Так как а + b + с = 0 (345 – 137 – 208 = 0), то

х1 = 1, х2 = c / a = -208/345.

Ответ: 1; -208/345.

2)Решим уравнение 132х2 – 247х + 115 = 0.

Решение. Так как а + b + с = 0 (132 – 247 + 115 = 0), то

х1 = 1, х2 = c / a = 115/132.

Ответ: 1; 115/132.

Б. Если второй коэффициент b = 2 k – четное число, то формулу корней

Пример.

Решим уравнение 3х2 — 14х + 16 = 0 .

Решение . Имеем: а = 3, b = — 14, с = 16, k = — 7 ;

D = k 2 ac = (- 7)2 – 3 • 16 = 49 – 48 = 1, D > 0, два различных корня;

Ответ: 2; 8/3

В. Приведенное уравнение

х2 + рх + q = 0

совпадает с уравнением общего вида, в котором а = 1 , b = р и с = q . Поэтому для приведенного квадратного уравнения формула корней

принимает вид:

К-во Просмотров: 379
Бесплатно скачать Контрольная работа: 10 способов решения квадратных уравнений