Контрольная работа: 10 способов решения квадратных уравнений
Например,
x 2 + 4 x – 5 = 0; x 1 = - 5 иx 2 = 1, так какq = - 5 < 0 иp = 4 > 0;
x 2 – 8 x – 9 = 0; x 1 = 9 иx 2 = - 1, так какq = - 9 < 0 иp = - 8 < 0.
5. СПОСОБ: Решение уравнений способом «переброски».
Рассмотрим квадратное уравнение
ах2 + b х + с = 0, где а ≠ 0.
Умножая обе его части на а, получаем уравнение
а2 х2 + а b х + ас = 0.
Пусть ах = у , откуда х = у/а ; тогда приходим к уравнению
у2 + by + ас = 0,
равносильно данному. Его корни у1 и у 2 найдем с помощью теоремы Виета.
Окончательно получаем
х1 = у1 /а и х1 = у2 /а .
При этом способе коэффициент а умножается на свободный член, как бы «перебрасывается» к нему, поэтому его называют способом «переброски» . Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.
Пример.
Решим уравнение 2х2 – 11х + 15 = 0.
Решение. «Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение
у2 – 11у + 30 = 0.
Согласно теореме Виета
у1 = 5 х1 = 5/2 x 1 = 2,5
у2 = 6 x 2 = 6/2 x 2 = 3.
Ответ: 2,5; 3.
6. СПОСОБ: Свойства коэффициентов квадратного уравнения.
А. Пусть дано квадратное уравнение
ах2 + b х + с = 0, где а ≠ 0.
1) Если, а+ b + с = 0 (т.е. сумма коэффициентов равна нулю), то х1 = 1,
х2 = с/а.
Доказательство. Разделим обе части уравнения на а ≠ 0, получим приведенное квадратное уравнение
x 2 + b / a • x + c / a = 0.