Контрольная работа: Аппарат теории двойственности для экономико-математического анализа. Анализ одномерного временного ряда

Целевой функцией задачи является общая стоимость выпускаемой продукции, которая должна быть наибольшей. Число ограничений задачи равно числу ресурсов, используемых для изготовления изделий - 3.

Дополнительно вводится условие неотрицательности переменных.

Зная цены изделий, нормы их расхода и запасы ресурсов, формулируем математическую модель исходной задачи линейного программирования:

Задачу оптимизации решаем с помощью надстройки «Поиск решения » табличного процессора EXCEL (меню «Сервис »):



р ис. 2 - Надстройка «Поиск решения»

Использование надстройки позволило получить значения переменных оптимального плана выпуска изделий: Х *=(95; 210; 0; 0). Целевая функция имеет наибольшее для данных условий задачи значение f (X *)=2115 (прил. 1 ).

Таким образом, для получения наибольшей выручки от реализации продукции следует производить x 1 *=95 изделий А , x 2 *=210 изделий Б и не производить изделия В (x 3 *=0) и Г (х4 *=0).

2. Обозначим двойственные оценки ресурсов I , II , III как y 1 , y 2 , y 3 соответственно. Целевой функцией двойственной задачи является общая стоимость запасов ресурсов в двойственных оценках, которая должна быть наименьшей. Число ограничений двойственной задачи равно числу переменных исходной задачи - 4. Математическая модель двойственной задачи имеет вид:

При решении исходной задачи с помощью EXCEL одновременно определяется и оптимальное решение двойственной задачи. В «Отчете по устойчивости » (прил. 2 ) приводятся теневые цены ресурсов: y 1 *=0; y 2 *=1,5;y 3 *=2,25.

Наименьшее значение целевой функции двойственной задачи

совпадает с наибольшим значением целевой функции исходной задачи f (X *). Следовательно, оптимальный план двойственной задачи определен верно.

3. Выпуск изделий В и Г невыгоден для данных условий задачи. Это объясняется тем, что затраты по ним превышают цену на 0,5 и 5 соответственно:

Таким образом, выпуск изделий В и Г убыточен и поэтому эти изделия не вошли в оптимальный план (x 3 *=0) и (х4 *=0).

4. Проанализируем использование ресурсов в оптимальном плане. Для этого подставим в ограничения исходной задачи значения переменных оптимального плана Х *=(95; 210; 0; 0) и проверим выполнение неравенств:

Видно, что ресурсы II и III используются в оптимальном плане полностью и являются дефицитными, т.е. сдерживающими рост целевой функции. Они имеют отличные от нуля оценки y 2 * =1,5 и y 3 * =2,25.

Увеличение объема ресурса II на одну единицу при неизменных объемах других ресурсов ведет к росту наибольшей выручки на 1,5 руб., а увеличение объема ресурса III на единицу - на 2,25 руб.

Ресурс I имеет нулевую двойственную оценку (y 1 *=0) и является недефицитными, т. е. избыточным в оптимальном плане. Увеличение объемов этого ресурса не повлияет на оптимальный план выпуска продукции и не увеличит ее общую стоимость.

Определим, насколько изменится выручка выпускаемой продукции при заданных изменениях запасов сырья. Из «Отчета по устойчивости » видно, что эти изменения происходят в пределах устойчивости (см. «Допустимое увеличение »и«Допустимое уменьшение » правых частей ограничений в прил. 2 ), что дает возможность сразу рассчитать изменение наибольшей выручки от реализации выпускаемой продукции, не решая новую задачу линейного программирования:

При этом «новая» наибольшая выручка составит:

руб.

Изменение запасов ресурсов привело не только к изменению значения целевой функции на 540 тыс. руб., но и к изменению плана выпуска. При этом структура плана не изменилась: изделия, которые были убыточны, не вошли и в новый план выпуска, т.к. цены на сырье не изменялись. Новый план выпуска составляет 75 единиц изделий А и 330 ед. изделий Б .

Для определения целесообразности включения в план выпуска еще и изделия Д с заданными характеристиками, рассчитаем стоимость ресурсов на изготовление единицы этого изделия в теневых ценах и сравним это значение с ценой реализации:

К-во Просмотров: 547
Бесплатно скачать Контрольная работа: Аппарат теории двойственности для экономико-математического анализа. Анализ одномерного временного ряда