Контрольная работа: Балансовый метод планирования
Обозначим через С матрицу, составленную из столбцов с1 с 2 , …, с n . Тогда вместо n равенств (2.7) можно написать одно:
(Е – А)С = Е.
Следовательно, матрица Е-А имеет обратную С, причем С ≥ 0.
Теорема доказана.
Теорема 2 (второй критерий продуктивности).
Неотрицательная квадратная матрица А продуктивна тогда и только тогда, когда её число Фробениуса меньше единицы.
Доказательство.
Пусть неотрицательная матрица А продуктивна. Тогда для любого неотрицательного вектора у существует решение х ≥ 0 уравнения (2.4) Пусть у > 0, тогда, очевидно, х > 0. Умножив равенство (2.4) слева на левый вектор Фробениуса рТ А и учитывая, что
рТ А А = λА рТ А , (2.8)
получим
λ А (рТ А х) + рТ А у = рТ А х,
или
(1 – λА )(рТ А х) = рТ А у.
Так как рТ А ≥ 0 и у ≥ 0, х ≥ 0, то рТ А у > 0, рТ А х > 0. Поэтому из последнего равенства вытекает, что λА < 1.
Обратно, пусть неотрицательная матрица А имеет число Фробениуса λА < 1. Покажем, что она продуктивна. Возьмем неотрицательный вектор у и покажем, что у системы (2.4) существует решение х ≥ 0.
Рассмотрим следующую неотрицательную матрицу размера (n + 1)(n+ 1):
а11 а12 … а1n у1
а21 а22 … а2n у2
А = …………….
аn1 аn2 … аnn уn
0 0 … 0 1
Где аij – элементы матрицы А и у1 , …, уn – координаты вектора у. В более компактной форме матрицу можно записать так:
А = А у
0 1
Умножая эту матрицу слева на вектор рТ = (0, …, 0,1), легко убедиться, что
рТ А = рТ .
Следовательно, одним из собственных значений матрицы А является вектор λ = 1.
Пусть вектор Х = (х1 , …, хn , хn+1 ) = (х , хn+1 ) является собственным вектором матрицы А, т.е. АХ = λХ. В силу определения матрицы А эторавносильно тому, что
А у х = λ х