Контрольная работа: Балансовый метод планирования
5х1 + 2х2 ≤ 10.
х1 ≥ 0, х2 ≥ 0, т.к. продукция выпускаемая не может быть отрицательной.
Задачу можно решить графическим методом и можно решить или проверить симплекс-методом.
Для решения графическим методом запишем граничные прямые:
1) 3х1 + 5х2 = 15;
2) 5х1 + 2х2 = 10.
Строим граничные прямые на плоскости, но для этого найдем точки для построения прямых:
1) х2 = 0; х1 = 5; х1 = 0; х2 = 3;
2) х2 = 0; х1 = 2; х1 = 0; х2 = 5.
ОДЗ – многоугольник ОАВСD.
Для определения ОДЗ (области допустимых значений) необходимо найти направление полуплоскостей.
Для испытания берем точку О(0;0) и подставляем её координаты в неравенство (1) и (2), если неравенство удовлетворяется, то полуплоскость направлена к точке (0;0). При наложении полуплоскостей друг на друга получим ОДЗ.
Строим вектор целевой функции С, перпендикулярно к нему проводим линию уровня (пунктирная линия). Перемещаем линию уровня по ОДЗ в направлении вектора целевой функции С и самая дальняя точка от начала координат – это точка А(0;3) в ней хопт .
Подставим координаты (0;3) в целевую функцию и получим её максимальное значение
Fmах = 5*0 + 3*32 = 96 ед. стоимости в точке А(0;3).
Для получения прибыли равной 96 ед.ст. необходимо включить в план продукцию типа В.
Задача 2
Фирма дополнительно освоила выпуск продукции четырех видов В1 , В2 , В3 , В4 . Для выпуска это продукции необходимо сырьё четырех видов А1 , А2 , А3 , А4 , которое фирма может ежемесячно покупать в ограниченном количестве. Количество сырья каждого вида, которое необходимо для производства каждого вида ассортимента продукции, а также ежемесячное поступление каждого вида сырья приведены в таблице.
Виды сырья | Ежемесячное поступление сырья | Затраты сырья на единицу каждого изделия | |||
В1 | В2 | В3 | В4 | ||
А1 | 1290 | 2 | 4 | 6 | 8 |
А2 | 990 | 2 | 2 | 0 | 6 |
А3 | 620 | 0 | 1 | 1 | 2 |
А4 | 300 | 1 | 0 | 1 | 0 |
Прибыль от реализации единицы изделия | 8 | 10 | 12 | 18 |
Построить математическую модель и определить, какой ассортимент продукции и в каком количестве должна производить фирма, чтобы прибыль от реализации была максимальной.
Решение
Введем переменные:
х1 – количество продукции типа В1 ;
х2 – количество продукции типа В2 ;
х3 – количество продукции типа В3 ;
х4 – количество продукции типа В4 .
Строим математическую модель задачи:
Fmах = 8х1 + 10х2 + 12х3 + 18х4
при условиях:
2х1 + 4х2 +6х3 + 8х4 ≤ 2110;