Контрольная работа: Балансовый метод планирования

1 + 2х2 ≤ 10.

х1 ≥ 0, х2 ≥ 0, т.к. продукция выпускаемая не может быть отрицательной.

Задачу можно решить графическим методом и можно решить или проверить симплекс-методом.

Для решения графическим методом запишем граничные прямые:

1) 3х1 + 5х2 = 15;

2) 5х1 + 2х2 = 10.

Строим граничные прямые на плоскости, но для этого найдем точки для построения прямых:

1) х2 = 0; х1 = 5; х1 = 0; х2 = 3;

2) х2 = 0; х1 = 2; х1 = 0; х2 = 5.

ОДЗ – многоугольник ОАВСD.

Для определения ОДЗ (области допустимых значений) необходимо найти направление полуплоскостей.

Для испытания берем точку О(0;0) и подставляем её координаты в неравенство (1) и (2), если неравенство удовлетворяется, то полуплоскость направлена к точке (0;0). При наложении полуплоскостей друг на друга получим ОДЗ.

Строим вектор целевой функции С, перпендикулярно к нему проводим линию уровня (пунктирная линия). Перемещаем линию уровня по ОДЗ в направлении вектора целевой функции С и самая дальняя точка от начала координат – это точка А(0;3) в ней хопт .

Подставим координаты (0;3) в целевую функцию и получим её максимальное значение

Fmах = 5*0 + 3*32 = 96 ед. стоимости в точке А(0;3).

Для получения прибыли равной 96 ед.ст. необходимо включить в план продукцию типа В.


Задача 2

Фирма дополнительно освоила выпуск продукции четырех видов В1 , В2 , В3 , В4 . Для выпуска это продукции необходимо сырьё четырех видов А1 , А2 , А3 , А4 , которое фирма может ежемесячно покупать в ограниченном количестве. Количество сырья каждого вида, которое необходимо для производства каждого вида ассортимента продукции, а также ежемесячное поступление каждого вида сырья приведены в таблице.

Виды сырья Ежемесячное поступление сырья Затраты сырья на единицу каждого изделия
В1 В2 В3 В4
А1 1290 2 4 6 8
А2 990 2 2 0 6
А3 620 0 1 1 2
А4 300 1 0 1 0
Прибыль от реализации единицы изделия 8 10 12 18

Построить математическую модель и определить, какой ассортимент продукции и в каком количестве должна производить фирма, чтобы прибыль от реализации была максимальной.

Решение

Введем переменные:

х1 – количество продукции типа В1 ;

х2 – количество продукции типа В2 ;

х3 – количество продукции типа В3 ;

х4 – количество продукции типа В4 .

Строим математическую модель задачи:

Fmах = 8х1 + 10х2 + 12х3 + 18х4

при условиях:


1 + 4х2 +6х3 + 8х4 ≤ 2110;

К-во Просмотров: 697
Бесплатно скачать Контрольная работа: Балансовый метод планирования