Контрольная работа: Балансовый метод планирования
0*х1 + х2 + х3 + 2х4 ≤ 1440;
х1 + 0*х2 + х3 + 0*х4 ≤ 1120.
хj ≥ 0; j = 1,4.
Приводим систему ограничений к каноническому виду:
2х1 + 4х2 +6х3 + 8х4 + х5 = 2110;
2х1 + 2х2 + 6х4 + х6 = 1810;
х2 + х3 + 2х4 + х7 = 1440;
х1 + х3 + х8 = 1120.
хj ≥ 0; j = 1,8.
Приводим систему ограничений к виду удобному для решения. Для этого проверим наличие единичного базиса в системах ограничений и так как он есть, то решаем задачу прямым симплекс-методом.
№ оп.пл. | Базис | С | bi | 8 | 10 | 12 | 18 | 0 | 0 | 0 | 0 |
х1 | х2 | х3 | х4 | х5 | х6 | х7 | х8 | ||||
х5 | 0 | 2110 | 2 | 4 | 6 | <8> | 1 | 0 | 0 | 0 | |
х6 | 0 | 1810 | 2 | 2 | 0 | 6 | 0 | 1 | 0 | 0 | |
х7 | 0 | 1440 | 0 | 1 | 1 | 2 | 0 | 0 | 1 | 0 | |
х8 | 0 | 1120 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | |
Fj - Сj | 0 | -8 | -10 | -12 | -18 | 0 | 0 | 0 | 0 | ||
х4 | 18 | 263,75 | 0,25 | 0,5 | 0,75 | 1 | 0,125 | 0 | 0 | 0 | |
х6 | 0 | 227,5 | <0,5> | -1 | -4,5 | 0 | -0,75 | 1 | 0 | 0 | |
х7 | 0 | 912,5 | -0,5 | 0 | -0,5 | 0 | -0,25 | 0 | 1 | 0 | |
х8 | 0 | 1120 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | |
Fj - Сj | 4747,5 | -3,5 | -1 | 1,5 | 0 | 2,25 | 0 | 0 | 0 | ||
х4 | 18 | 150 | 0 | 1 | <3> | 1 | 0,5 | -0,5 | 0 | 0 | |
х1 | 8 | 455 | 1 | -2 | -9 | 0 | -1,5 | 2 | 0 | 0 | |
х7 | 0 | 1140 | 0 | -1 | -5 | 0 | -1 | 1 | 1 | 0 | |
х8 | 0 | 665 | 0 | 2 | 10 | 0 | 1,5 | -2 | 0 | 1 | |
Fj - Сj | 6340 | 0 | -8 | -30 | 0 | 0,1667 | 7 | 0 | 0 | ||
х3 | 12 | 50 | 0 | 0,3333 | 1 | 0,3333 | 0,1667 | 0,1667 | 0 | 0 | |
х1 | 8 | 905 | 1 | 1 | 0 | 3 | 0,5 | 0,5 | 0 | 0 | |
х7 | 0 | 1390 | 0 | 0,6667 | 0 | 1,6667 | 0,1667 | 0,1667 | 1 | 0 | |
х8 | 0 | 165 | 0 | -1,333 | 0 | -3,333 | -0,333 | -0,333 | 0 | 1 | |
Fj - Сj | 7840 | 0 | 2 | 0 | 10 | 2 | 2 | 0 | 0 |
Ответ: Fmах = 7840 ед. стоимости; хопт = (905; 0; 50; 0; 0; 0; 1390; 165).
Для получения прибыли равной 7840 ед. стоимости необходимо включить в план продукцию первого и третьего вида в количествах:
В1 = 905 ед.;
В3 = 50 ед.,
При этом остались недоиспользованные ресурсы в количествах:
А3 = 1390 ед.
А4 = 165 ед.
Задача 3
Для откорма группы животных на ферме необходимо наличие в ежедневном рационе не менее как В1 , единиц питательных веществ В2 и т.д. – не менее как Вm . Указанные питательные вещества содержатся в n разных кормовых продуктах, которые можно закупить.
Составить такой ежедневный кормовой рацион, при котором будет удовлетворена потребность в питательных и затраты на откорм будут минимальны.
Питательные вещества | Кормовые продукты |
Суточная необходимость Вi = В0 + n1 | |||
В1 | В2 | В3 | В4 | ||
А1 | 1 | 2 | 2 | 1 | 64 + 9 |
А2 | 0 | 3 | 1 | 1 | 39 + 9 |
А3 | 2 | 1 | 0 | 3 | 35 + 9 |
Стоимость 1 кг кормов | 2 | 1 | 3 | 4 |
Составить математическую модель и решить ЗЛП.
Решение
Введем переменные:
х1 – количество кормового продукта В1
х2 – количество кормового продукта В2
х3 – количество кормового продукта В3
х4 – количество кормового продукта В4