Контрольная работа: Кривые на плоскости
Как и в случае прямоугольной системы можно заменить a 2 = 2c 2 :
Плотность точек кривой при равномерном изменении параметра
· Параметрическое уравнение в прямоугольной системе:
, где
Это единственный вариант рациональной параметризации кривой. Уравнение полностью описывает кривую, когда параметр пробегает всю вещественную прямую: от до . При этом, когда параметр стремится к , точка кривой стремится к (0;0) из второй координатной четверти, а когда параметр стремится к , то — из четвёртой. Распределение точек, которые даёт параметрическое уравнение, при изменении его параметра с фиксированным шагом показано на рисунке.
Свойства
Лемниската Бернулли является частным случаем овала Кассини при a = c , синусоидальной спирали с индексом n = 2 и лемнискаты Бута при c = 0, поэтому она наследует некоторые свойства этих кривых.
Свойства от овала Кассини
· Лемниската — кривая четвёртого порядка.
· Она симметрична относительно двойной точки — середины отрезка между фокусами.
· Кривая имеет 2 максимума и 2 минимума. Их координаты:
· Расстояние от максимума до минимума, находящихся по одну сторону от серединного перпендикуляра отрезка между фокусами равно расстоянию от максимума (или от минимума) до двойной точки.
· Лемнискату описывает окружность радиуса , поэтому иногда в уравнениях производят эту замену.
Свойства от синусоидальной спирали
· Точка, где лемниската пересекает саму себя, называется узловой или двойной точкой.
· Касательные в двойной точке составляют с отрезком F 1 F 2 углы .
· Угол μ, составляемый касательной в произвольной точке кривой с радиус-вектором точки касания равен .
· Касательные в точках пересечения кривой и хорды, проходящей через двойную точку, параллельны друг другу.
· Инверсия относительно окружности с центром в двойной точке, переводит лемнискату Бернулли в равнобочную гиперболу.
· Радиус кривизны лемнискаты есть
Есть частный случай формулы радиуса кривизны синусоидальной спирали:
при m = 2,
однако, легко вывести и по определению.
Уравнение лемнискаты в полярной системе:
Формулы перехода к полярной системе координат:
Выражаем :
Подставляем в уравнение лемнискаты и выражаем x и y :