Контрольная работа: Лінейна балансова модель і її використання в економічних розрахунках
З рівності (9) витікає наступне:
Щоб випустити тільки одиницю кінцевого продукту к-й галузі, необхідно в 1-ій галузі випустити х1=S1k, в 2-ій х2=S2k і так далі, в i-й галузі випустити xi=Sik і, нарешті, в n-й галузі випустити xn=Snk одиниць продукції.
Так при цьому виді кінцевого продукту виробництва тільки одиниця к-го продукту, то величини S1k, S2k., Sik., Snk, є коефіцієнти повних витрат продукції 1-й, 2-й і так далі, n -й галузей вказаної одиниці к-го продукту, що йде на виготовлення. Ми вже ввели раннє коефіцієнти прямих витрат a1k, a2k., aik., ank на одиницю продукції к-й галузі, які враховували лише ту частину продукції кожної галузі, яка споживається безпосередньо к-й галуззю. Але, очевидно, необхідно забезпечити замкнутий виробничий цикл. Якби продукція i -й галузі поступала б тільки в к-ю галузь в кількості aik , те виробництво к-й галузі все одно не було б забезпечено, бо було потрібно ще продукти 1-ої галузі (a 1 k ), 2-ій галузі (a 2 k ) і так далі А вони у свою чергу не зможуть працювати, якщо не отримуватимуть продукцію тієї ж i -й галузі (ai1, ai2. і так далі). Проілюструємо сказане на прикладі табл. 2
Хай нас не цікавить випуск для зовнішнього споживання продукції 2-ої галузі (k=2) і ми хочемо визначити витрати продукції 1-ої галузі на одиницю цієї продукції. З табл. 2 знаходимо, що на кожну одиницю продукції 2-ої галузі (х2=1) витрачається: продукції 1-ої галузі a12=0.4 і 2-ій галузі a22=0.1.
Такі будуть прямі витрати. Хай потрібно виготовити у2=100. Чи можна для цього планувати випуск 1-ої галузі х1=0.4100=40? Звичайно, не можна, оскільки необхідно враховувати, що 1-а галузь частина своєї продукції споживає сама (а11=0.2), і тому сумарний її випуск слід скоректувати: х1=40+0.240=48. Проте і ця цифра невірна, оскільки тепер уже слід виходити з нового об'єму продукції 1-ої галузі – х1=48 'і так далі Але справа не тільки в цьому. Згідно табл. 2 продукція 2-ої галузі також необхідна для виробництва і 1-ої і 2-ої галузей і тому потрібно буде випускати більше, ніж у2=100. Але тоді зростуть потреби в продукції 1-ої галузі. Тоді досить звернутися до складеної систем рівнянь, поклавши у1=0 і у2=1 (см п. 2):
0.8х1 – 0.4х2 = 0
-0.55х1 + 0.9х2 = 1
Вирішивши цю систему, отримаємо х1=0.8 і х2=1.5. Отже, для того, щоб виготовити одиницю кінцевого продукту 2-ої галузі, необхідно в 1-ій галузі випустити продукції х1=0.8. Цю величину називають коефіцієнтом повних витрат і позначають її через S12 . Таким чином, якщо а12=0.4 характеризує витрати продукції 1-ої галузі на виробництво одиниці продукції 2-ої галузі, використовувані безпосередньо в 2-ій галузі (чому вони і були названі прямі витрати) , то S12 враховують сукупні витрати продукції 1-ої галузі як прямі (а12), так і непрямі витрати, що реалізовуються через інші (в даному випадку через 1-у ж) галузі, але кінець кінцем необхідні для забезпечення випуску одиниці кінцевого продукту 2-ої галузі. Ці непрямі витрати складають S12-a12=0.8–0.4=0.4
Якщо коефіцієнт прямих витрат обчислюється на одиницю валового випуску, наприклад а12=0.4 при х2=1, то коефіцієнт повних витрат розраховується на одиницю кінцевого продукту.
Отже, величина Sik характеризує повні витрати продукції i -й галузі для виробництва одиниці кінцевого продукту к-й галузі, що включають як прямі (aik), так і непрямі (Sik – aik) витрати.
Очевидно, що завжди Sik > aik.
Якщо необхідно випустити уk одиниць к-го кінцевого продукту, то відповідний валовий випуск кожної галузі складе на підставі системи (8):
x1 = S1kyk·, x2 = S2kyk., xn = Snkyk
що можна записати коротше у вигляді:
x = Skyk· (10)
Нарешті, якщо потрібно випустити набір кінцевого продукту, заданий ассортиментным вектором У =:, то валовий випуск к-й галузі xk , необхідний для його забезпечення, визначиться на підставі рівності (10) як скалярний твір стовпця Sk на вектор У , тобто
xk = Sk1y1 + Sk2y2 +. + Sknyn = Sky (·11)·
а весь вектор-план х знайдеться з формули (7) як твір матриці S на вектор У.
Таким чином, підрахувавши матрицю повних витрат S , можна по формулах (7) – (11) розрахувати валовий випуск кожної галузі і сукупний валовий випуск всіх галузей при будь-якому заданому асортиментному векторі У .
Можна також визначити, яка зміна у вектор-плане Dх = (Dх1, Dх2., Dхn) викличе задану зміну асортиментного продукту У = (у1, у2., уn) по формулі:
Dх = SУ (·D12)
Приведемо приклад розрахунку коефіцієнтів повних витрат для балансової табл. 2. Ми маємо матрицю коефіцієнтів прямих витрат :
0.2 0.4
А =
0.55 0.1
Отже
1 -0.2 -0.4 0.8 -0.4
Е – А = =