Контрольная работа: Лінейна балансова модель і її використання в економічних розрахунках

xn+2

Хай додатково до даним, поміщеним в табл. 2, відомі за підсумками виконання балансу фактичні витрати праці xn+1, k (у тис. людино-годин) і капіталовкладень xn+2, k (у тис. крб.), які записані в табл. 3

Переходячи до коефіцієнтів прямих витрат aik , отримаємо розширену матрицю:

0.2 0.4

А' = 0.55 0.1

0.5 0.2

1.5 2.0

Зворотна матриця S = (E – A)-1 була вже підрахована в попередньому пункті.

На підставі (13) розрахуємо коефіцієнти повних витрат праці (Sn+1, k=S3, k):

S31 = a3S1· = 0.5 · 1.8 + 0.2 1.1 = 1.12;

S32 = a3S2· = 0.5 · 0.8 + 0.2 1.6 = 0.72

і капіталовкладень Sn+2, k = S4, k:

S41 = a4S1· = 1.5 · 1.8 + 2.0 1.1 = 4.9;

S42 = a4S2· = 1.5 · 0.8 + 2.0 1.6 = 4.4.

Таким чином, розширена матриця S ' коефіцієнтів повних витрат прийме вигляд:

1.8 0.8

S' = 1.1 1.6

1.12 0.72

4.9 4.4


Якщо задатися на планований період колишнім асортиментним вектором

У = 240, то розрахувавши по формулах (16) сумарні витрати праці xn+1 і 85 капіталовкладень xn+2, отримали б xn+1 = x3 = 1,12 · 240 + 0.72 · 85 = 268.8 + 61.2 = 330 тис. чіл.-ч. і xn+2 = xn = 4.9 240 + 4.4 85 = 1176 + 374 = 1550 тис. руб., що співпадає з початковими даними табл. 3.

Проте на відміну від табл. 3, де ці сумарні витрати групуються по галузях

(250 і 80 або 750 і 800), тут вони розподілені по видах кінцевої продукції: на продукцію 1-ої галузі 268.8 і на продукцію 2-ої галузі 61.2; відповідно витрати капіталовкладень складають 1176 і 374.

При будь-якому новому значенні асортиментного вектора У всі показники плану, такі, як валова продукція кожної галузі і сумарні витрати трудових ресурсів і капіталовкладень знайдемо з формули (17).

Так, хай заданий асортиментний вектор У = 480. Тоді

_ х1 1.8 0.8 1000

х = х2 = 1.1 1.6 480 = 800

х3 1.12 0.72 170 600

х4 4.9 4.4 3100

К-во Просмотров: 315
Бесплатно скачать Контрольная работа: Лінейна балансова модель і її використання в економічних розрахунках