Контрольная работа: Линейный множественный регрессивный анализ

где стандартная ошибка для средних значений:

Т.е. средний размер стоимости жилой площади размером 42,1223 условные единицы находится в границах от 27,2719 до 35,2375 условные единицы.

Доверительный интервал для индивидуальных значений размера стоимости квартир с жилой площадью 42,1223 условные единицы с надежностью g=0,95:

,

где стандартная ошибка для индивидуальных значений:

Таким образом, если размер жилой площади будет находиться на уровне 42,1223 условные единицы, то возможный размер ее стоимости в 95% случаев может находиться внутри интервала от 16.046 до 46.463 условные единицы. Этот интервал определяет границы, за пределами которых могут оказаться не более 5% значений стоимости квартир, которые могли быть зафиксированы при размере их жилой площади в 42,1223 условные единицы.

Выводы, сделанные ранее подтвердились. Интервальный прогноз не отличается высокой точностью, но вполне пригоден для практического использования.

8. Полученные результаты позволяют сделать следующие выводы:

Статистически значимый коэффициент регрессии b1 и коэффициент корреляции rух свидетельствуют о наличии сильной зависимости стоимости квартиры от размера ее жилой площади. Можно считать, что наличие этой зависимости статистически доказано, направление и общая тенденция отражена уравнением регрессии верно и согласуется с экономической теорией. Высокое значение коэффициента детерминации R2 указывает, что на формирование стоимости квартир существенное влияние оказывает именно размер их жилой площади и в значительно меньшей мере (порядка 26 %) - другие экономические факторы.

С другой стороны, относительная ошибка аппроксимации свидетельствует, что модель подобрана не точно: в среднем теоретические (смоделированные данные) отличаются от фактических на 19,8 %. В целом применение полученного уравнения регрессии возможно в случае повышения его прогностической силы и практической ценности за счет увеличения объема выборки.

Задача 2

В исходной таблице (вариант 8) представлены статистические данные о различных параметрах уровня жизни населения в 2004 г.:

Страны Х1 Х3 Х6 Х8 Х9 У
1 Россия 55 30 20,4 28 124 84,98
2 Австралия 100 47 71,4 121 87 30,56
3 Австрия 93 37 78,7 146 74 38,42
4 Азербайджан 20 12,4 12,1 52 141 60,34
5 Армения 20 4,3 10,9 72 134 60,22
6 Белоруссия 72 28 20,4 38 120 60,79
7 Бельгия 85 48 79,7 83 72 29,82
8 Болгария 65 18 17,3 92 156 70,57
9 Великобритания 67 39 69,7 91 91 34,51
10 Венгрия 73 40 24,5 73 106 64,73
11 Германия 88 35 76,2 138 73 36,63
12 Греция 83 24 44,4 99 108 32,84
13 Грузия 21 36 11,3 55 140 62,64
14 Дания 98 38 79,2 89 77 34,07
15 Ирландия 99 31 57 87 102 39,27
16 Испания 89 26 54,8 103 72 28,46
17 Италия 84 27 72,1 169 118 30,27
18 Казахстан 61 19,2 13,4 10 191 69,04
19 Канада 98 44 79,9 123 77 25,42
20 Киргизия 46 23,5 11,2 20 134 53,13
21 Нидерланды 86 37 72,4 176 59 28,00
22 Португалия 73 27 48,6 150 83 38,79
23 США 115 29 100 99 103 32,04
24 Финляндия 62 36 63,9 82 94 38,58
25 Франция 91 36 77,5 84 85 18,51
26 Чехия 82 45 34,7 65 114 57,62
27 Япония 40 20 83,5 60 119 20,80
1966 837,4 1385,2 2405 2854 1181,05
72,81 31,01 51,3 89,07 105,7 43,74

Х1 - потребление мяса и мясопродуктов на душу населения (кг),

Х3 - потребление сахара на душу населения (кг),

Х6 - оценка ВВП по паритету покупательной способности в 1994 г. на душу населения (в % к США),

Х8 - потребление фруктов и ягод на душу населения (кг),

Х9 - потребление хлебных продуктов на душу населения (кг),

У – смертность населения по причине болезни органов кровообращения на 100000 населения.

Требуется:

1) Рассчитать параметры линейного уравнения множественной регрессии.

2) Определить сравнительную оценку влияния факторов на результативный показатель с помощью коэффициентов эластичности.

3) Оценить статистическую значимость параметров регрессионной модели с помощью t-критерия. Адекватность модели проверить с помощью F-критерия.

4) Оценить качество построенного уравнения с помощью средней ошибки аппроксимации.

5) Используя метод многошагового регрессионного анализа, построить регрессионную модель только со значимыми факторами и оценить ее параметры.

6) Определить прогнозное значение результата, если прогнозные значения факторов составляют 80 % от их максимальных значений.

К-во Просмотров: 360
Бесплатно скачать Контрольная работа: Линейный множественный регрессивный анализ