Контрольная работа: Математические модели в экономике
где S – площадь основания, H – высота пирамиды.
В рассматриваемом случае высота Н равна 24.
Площадь основания равна Ѕ АВ умножить на ВС и на синус угла между ними.
Задание 2
Даны зависимости спроса D и предложения S от цены. Найдите равновесную цену, при которой выручка максимальна и эту максимальную выручку.
Вариант | Данные |
1 | D = 1000 – 10p; S = 100 +10p |
Решение:
Точка равновесия характеризуется равенством спрос и предложения, т.е. 1000 – 10p = 100+10p. Равновесная цена p* = 45 и выручка при равновесной цене W(p* ) = p* * D(p* ) = p* * S(p* ) = 24750.
При цене p > p* объем продаж и выручка определяется функцией спроса, при p < p* - предложения. Необходимо найти цену , определяющую максимум выручки:
p*(1000 – 10p) – функция имеет максимум в точке 50, W(50)=25000
p*(100 - 10p) –функция максимальна в точке 5, W(5)=250
Таким образом, максимальная выручка W(р) =25000 достигается не при равновесной цене.
Задание 3
Найдите решение матричной игры (оптимальные стратегии и цену игры).
Вариант | Игра |
1 |
Сначала необходимо проверить наличие седловой точки. Седловой точки нет.
Обозначим стратегию Первого , искомую оптимальную стратегию Второго .
Выигрыш Первого есть случайная величина с таким рядом распределения:
W(x,y): | 2 | -3 | -2 | 2 |
xy | x(1-y) | (1-x)y | (1-x) (1-y) |
Находим средний выигрыш за партию Первого – математическое ожидание случайной величины W(x,y):
M(x,y)=2xy-3x(1-y)-2(1-x)y+2(1-x)(1-y)=2xy-3x+3xy-2y+2xy+2-2x-2y+2xy=9xy-5x-4y+2=9x(y-5/9)-4(y-5/9)+6/9=9(y-5/9)(x-4/9)+6/9
Для нахождения оптимальных стратегий игроков необходимо, чтобы M(x,y* )≤ M(x* ,y* )≤ M(x* ,y). Это выполняется при x* =4/9 и y* =5/9, так как именно в этом случае M(x , 5/9) = M(4/9 , 5/9) = M(4/9 , y) = 6/9.
Следовательно, оптимальная стратегия первого игрока есть
,
Второго - . Цена игры по определению равна v=M(P* ,Q* )=6/9
Задание 4
Для трехотраслевой экономической системы заданы матрица коэффициентов прямых материальных затрат и вектор конечной продукции. Найти коэффициенты полных материальных затрат двумя способами (с помощью формул обращения невырожденных матриц и приближенно), заполнить схему межотраслевого баланса.
Вариант | Данные |
1 |