Контрольная работа: Метод Лобачевського-Греффе

1. Метод Лобачевского-Греффе розв’язання рівнянь (випадок дійсних коренів)

1.1 Загальні властивості алгебраїчних рівнянь

Розглянемо алгебраїчне рівняння n-ного ступеню (n≥1)

, (1)

де коефіцієнти a0, a1, … , an – дійсні числа, причому a0≠0.

В загальному випадку вважатимемо перемінну x вважатимемо комплексною.

Головна теорема алгебри. Алгебраїчне рівняння n-ного ступеню (1) має рівно n коренів, дійсних або комплексних, при умові, що кожен корінь рахується стільки разів, яка його кратність.

При цьому кажуть, що корінь ξ рівняння (1) має кратність s, якщо

,

. (символи над P означають похідні)

Комплексні корені рівняння (1) володіють властивістю парної сполученості.

Теорема. Якщо коефіцієнти алгебраїчного рівняння (1) – дійсні, то комплексні корені цього рівняння попарно комплексно-сполучені, тобто якщо

(α, β – дійсні) є коренем рівняння (1) кратності s, то число

також є коренем цього рівняння та має ту ж кратність s.

Відзначимо, що модулі цих коренів однакові:

.

Якщо x1, x2, … , xn - корені рівняння (1), то для лівої частини його вірний розклад

. (2)

Звідси, роблячи перемноження біномів в формулі (2) і прирівнюючи коефіцієнти при однакових ступенях x в лівій та правій частині рівняння (2), отримаємо співвідношення між коренями та коефіцієнтами між коренями та коефіцієнтами рівняння:

(3)

Ліві частини рівняння (3) представляють собою суми сполучень коренів рівняння (1) по одному, по два і т. д. з n.

Приклад. Корені x1, x2, x3 кубічного рівняння


x3+px2+qx+r=0

задовольняють умовам:

Якщо враховувати кратність коренів, то розкладання (2) приймає вигляд

,

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 407
Бесплатно скачать Контрольная работа: Метод Лобачевського-Греффе