Контрольная работа: Метод Лобачевського-Греффе

Звідси маємо:

(k=1, 2, …, n); (4)


знаки коренів визначаються грубою прикидкою, при підстановці в дане рівняння, або на підставі співвідношень між коренями та коефіцієнтами рівнянь. Процес квадратування коренів зазвичай продовжується доти, доки подвоєні добутки не перестануть впливати на перші головні члени коефіцієнтів перетвореного рівняння. Правило. Процес квадратування коренів варто припинити, якщо коефіцієнти деякого перетвореного рівняння в межах точності обчислень дорівнюють квадратам відповідних коефіцієнтів наступного перетвореного рівняння за рахунок відсутності подвоєних добутків. Дійсно, якщо перетворене рівняння, що відповідає ступеню 2p+1, має вигляд

та виконані співвідношення

(k=0, 1, 2, …, n),

то, вочевидь, отримаємо:

.

Таким чином, при цих обставинах ми не зможемо збільшити точність обчислення коренів. Так як при використання метода Лобачевського-Греффе коефіцієнти перетворених рівнянь, взагалі кажучи, швидко зростають, то корисно виділяти порядки їх, записуючі коефіцієнти в стандартній формі α*10m, де |α|<10 та m – ціле число.


1.6 Формули методу

Як сказано в ідеї методу

(1)

Отже, якщо корені рівняння

відділені, то вони наближено визначаються з ланцюжку рівнянь

;

причому точність цих коренів залежить від того, наскільки малі за модулем величини k в співвідношеннях

.


При квадратуванні коренів коефіцієнти при змінних, як було сказано, дорівнюють

A0=a02,

A1=a12-2a0a2,

A2=a22-2a1a3+2a0a4,

An=an2.

Коротше можна записати:

(k=0, 1, 2, …, n),

де мається на увазі as=0 при s<0 і s>n.

Після квадратування коренів отримаємо рівняння:

,

К-во Просмотров: 409
Бесплатно скачать Контрольная работа: Метод Лобачевського-Греффе