Контрольная работа: Метод Лобачевського-Греффе
α1+ α2+...+ αm=n.
Похідна виражається наступним чином:
,
де Q(x) – поліном такий, що
Q(x)≠0 при k=1, 2, …, m.
Тому поліном
є найбільшим загальним дільником поліному P(x) і його похідної P'(x). Як відомо, поліном R(x) може бути знайдений за допомогою алгоритму Евкліда. Складаючи відношення
,
отримаємо поліном
з дійсними коефіцієнтами A0=a0, A1, …, Am, корені якого x1, x2, …, xm різні.
1.2 Постановка задачі методу
Дано алгебраїчне рівняння n-ного ступеню:
знайти корені рівняння (тобто всі значення змінної x, при яких рівняння вірне).
1.3 Ідея методу
Розглянемо алгебраїчне рівняння n-ного ступеню
, (1)
де . Припустимо, що корені рівняння (1) x1, x2, …, xn такі, що
, (2)
тобто корені різні за модулем, при чому модуль кожного попереднього кореня значно більший модуля наступного. Іншими словами, ми припускаємо, що відношення будь-яких двох сусідніх коренів, рахуючи у порядку спадання їх номерів, є величина, мала за модулем, тобто
(3)
де |k|< та - мала величина. Такі корені для кратності називатимемо відділеними (треба зауважити, що в загальному випадку це можуть бути як дійсні так і комплексні корені).
Скористаймося тепер співвідношеннями між коренями та коефіцієнтами рівняння (1)
Звідси в силу припущення (3) ми отримуємо:
(4)
де E1, E2, …, En – малі за модулем величини у порівнянні з одиницею. Нехтуючи в рівностях (4) величинами Ek (k=1, 2, …, n), будемо мати наближені відношення