Контрольная работа: Метод Лобачевського-Греффе

α1+ α2+...+ αm=n.

Похідна виражається наступним чином:

,

де Q(x) – поліном такий, що

Q(x)≠0 при k=1, 2, …, m.

Тому поліном


є найбільшим загальним дільником поліному P(x) і його похідної P'(x). Як відомо, поліном R(x) може бути знайдений за допомогою алгоритму Евкліда. Складаючи відношення

,

отримаємо поліном

з дійсними коефіцієнтами A0=a0, A1, …, Am, корені якого x1, x2, …, xm різні.

1.2 Постановка задачі методу

Дано алгебраїчне рівняння n-ного ступеню:

знайти корені рівняння (тобто всі значення змінної x, при яких рівняння вірне).

1.3 Ідея методу

Розглянемо алгебраїчне рівняння n-ного ступеню

, (1)


де . Припустимо, що корені рівняння (1) x1, x2, …, xn такі, що

, (2)

тобто корені різні за модулем, при чому модуль кожного попереднього кореня значно більший модуля наступного. Іншими словами, ми припускаємо, що відношення будь-яких двох сусідніх коренів, рахуючи у порядку спадання їх номерів, є величина, мала за модулем, тобто

(3)

де |k|< та - мала величина. Такі корені для кратності називатимемо відділеними (треба зауважити, що в загальному випадку це можуть бути як дійсні так і комплексні корені).

Скористаймося тепер співвідношеннями між коренями та коефіцієнтами рівняння (1)

Звідси в силу припущення (3) ми отримуємо:


(4)

де E1, E2, …, En – малі за модулем величини у порівнянні з одиницею. Нехтуючи в рівностях (4) величинами Ek (k=1, 2, …, n), будемо мати наближені відношення

К-во Просмотров: 408
Бесплатно скачать Контрольная работа: Метод Лобачевського-Греффе