Контрольная работа: Основы математического анализа

Пример 2. Доказать неравенства

a) неравенство Бернулли: (1 + )n ≥ 1 + n,  > -1, n  N.

b) x1 + x2 + ... + xn ≥ n, если x1 x2 · ... ·xn = 1 и xi > 0, .

c) неравенство Коши относительно среднего арифемтического и среднего геометрического

где xi > 0, , n ≥ 2.

d) sin2n a + cos2n a ≤ 1, n ÎN.

e)

f) 2n > n3 , n Î N, n ≥ 10.

Решение. a) При n = 1 получаем истинное неравенство


1 + a ≥ 1 + a.

Предположим, что имеет место неравенство

(1 + a)n ≥ 1 + na (1)

и покажем, что тогда имеет место и

(1 + a)n + 1 ≥ 1 + (n + 1)a.

,  a > -1  a + 1 > 0,  (1)  (a + 1), 

(1 + a)n (1 + a) ≥ (1 + na)(1 + a)



(1 + a)n + 1 ≥ 1 + (n + 1)a + na2

 na2 ≥ 0, ,

(1 + a)n + 1 ≥ 1 + (n + 1)a + na2 ≥ 1 + (n + 1)a.

Таким образом, если P(n) истинно, то и P(n + 1) истинно, следовательно, согласно принципу математической индукции, неравенство Бернулли справедливо.

b) При n = 1 получим x1 = 1 и, следовательно, x1 ≥ 1 то есть P(1) - справедливое утверждение. Предположим, что P(n) истинно, то есть, если adica, x1 ,x2 ,...,xn - n положительных чисел, произведение которых равно единице, x1 x2 ·...·xn = 1, и x1 + x2 + ... + xn ≥ n.

Покажем, что это предложение влечет истинность следующего: если x1 ,x2 ,...,xn ,xn +1 - (n + 1) положительных чисел, таких, что x1 x2 ·...·xn ·xn +1 = 1, тогда x1 + x2 + ... + xn + xn + 1 ≥ n + 1.

Рассмотрим следующие два случая:

1) x1 = x2 = ... = xn = xn +1 = 1. Тогда сумма этих чисел равна (n + 1), и требуемое неравество выполняется;

2) хотя бы одно число отлично от единицы, пусть, например, больше единицы. Тогда, поскольку x1 x2 · ... ·xn ·xn + 1 = 1, существует еще хотя бы одно число, отличное от единицы (точнее, меньше единицы). Пусть xn + 1 > 1 и xn < 1. Рассмотрим n положительных чисел

x1 ,x2 ,...,xn -1 ,(xn ·xn +1 ).

Произведение этих чисел равно единице, и, согласно гипотезе,

К-во Просмотров: 424
Бесплатно скачать Контрольная работа: Основы математического анализа