Контрольная работа: Прогнозирование на основе регрессионных моделей

По имеющимся исходным данным выявить и оценить на основе регрессионных моделей производственные связи. Провести расчет прогнозных значений показателей, когда уровень факторных показателей на 30% превышают средние величины исходных данных.

Исходные данные представлены в таблице:

Удой молока на среднегодовую корову, кг Расход кормов на 1 корову, корм. ед. Удельный вес чистопородных коров в стаде, % Себестоимость молока за 1 кг, руб.
1 3280 48,20 61 0,313
2 2920 43,10 54 0,413
3 5140 60,70 70 0,268
4 4630 60,10 67 0,310
5 4950 59,40 71 0,309
6 5000 52,50 74 0,288
7 2790 44,00 45 0,357
8 4340 54,20 68 0,247
9 4160 53,20 65 0,305
10 2660 46,40 51 0,376
11 2960 47,10 52 0,351
12 3230 46,10 57 0,356
13 3480 53,90 58 0,312
14 3230 53,40 52 0,415
15 2370 39,40 44 0,411
16 2610 40,20 50 0,380
17 3000 45,50 52 0,326
18 2960 41,40 49 0,341
19 3100 47,80 53 0,398
20 2720 46,30 57 0,405

Необходимо определить тесноту связи между данными признаками. Для этого вначале воспользуемся коэффициентом корреляции рангов Спирмэна. Этот показатель основан на корреляции не самих значений коррелируемых признаков, а их рангов. Для его расчета присвоим ранги значениям соответствующих признаков, затем найдем их разность d. Эти вычисления отразим в нижеследующих таблицах. Далее вычислим непосредственно сам коэффициент, который равен: , ( n – число наблюдаемых пар значений признаков.)

Расчетные таблицы для определения коэффициента корреляции рангов Спирмэна

Удой молока на среднегодовую корову, кг Себестоимость молока за 1 кг, руб. Ранги Разность рангов d = Nx - Ny d2
x y Nx Ny
3280 0,313 8 13 -5 25
2920 0,413 15 2 13 169
5140 0,268 1 19 -18 324
4630 0,31 4 15 -11 121
4950 0,309 3 16 -13 169
5000 0,288 2 18 -16 256
2790 0,357 16 8 8 64
4340 0,247 5 20 -15 225
4160 0,305 6 17 -11 121
2660 0,376 18 7 11 121
2960 0,351 13,5 10 3,5 12,25
3230 0,356 9,5 9 0,5 0,25
3480 0,312 7 14 -7 49
3230 0,415 9,5 1 8,5 72,25
2370 0,411 20 3 17 289
2610 0,38 19 6 13 169
3000 0,326 12 12 0 0
2960 0,341 13,5 11 2,5 6,25
3100 0,398 11 5 6 36
2720 0,405 17 4 13 169
n = 20 ∑ d 2 = 2398
ρ = -0,803

Из выше приведенного можно сказать о сильной обратной связи между удоем молока и себестоимостью, т.е. при увеличении удоя себестоимость молока снижается.

Расход кормов на 1 корову, корм.ед. Себестоимость молока за 1 кг, руб. Ранги Разность рангов d = Nx - Ny d2
x y Nx Ny
48,2 0,313 9 13 -4 16
43,1 0,413 17 2 15 225
60,7 0,268 1 19 -18 324
60,1 0,31 2 15 -13 169
59,4 0,309 3 16 -13 169
52,5 0,288 8 18 -10 100
44 0,357 16 8 8 64
54,2 0,247 4 20 -16 256
53,2 0,305 7 17 -10 100
46,4 0,376 12 7 5 25
47,1 0,351 11 10 1 1
46,1 0,356 14 9 5 25
53,9 0,312 5 14 -9 81
53,4 0,415 6 1 5 25
39,4 0,411 20 3 17 289
40,2 0,38 19 6 13 169
45,5 0,326 15 12 3 9
41,4 0,341 18 11 7 49
47,8 0,398 10 5 5 25
46,3 0,405 13 4 9 81
n = 20 ∑ d 2 = 2202
ρ = -0,656

Так как значение коэффициента отрицательно, следовательно, имеем обратную связь между расходом кормов на 1 корову и себестоимостью молока.



Удельный вес чистопородных коров в стаде, %

Себестоимость молока за 1 кг, руб. Ранги Разность рангов d = Nx - Ny d2
x y Nx Ny
61 0,313 7 13 -6 36
54 0,413 11 2 9 81
70 0,268 3 19 -16 256
67 0,31 5 15 -10 100
71 0,309 2 16 -14 196
74 0,288 1 18 -17 289
45 0,357 19 8 11 121
68 0,247 4 20 -16 256
65 0,305 6 17 -11 121
51 0,376 16 7 9 81
52 0,351 13 10 3 9
57 0,356 9 9 0 0
58 0,312 8 14 -6 36
52 0,415 13 1 12 144
44 0,411 20 3 17 289
50 0,38 17 6 11 121
52 0,326 13 12 1 1
49 0,341 18 11 7 49
53 0,398 12 5 7 49
57 0,405 9 4 5 25
n = 20 ∑ d 2 = 2260
ρ = -0,699

Имеется обратная зависимости между удельным весом чистопородных коров в стаде и себестоимостью молока.

Удой молока на среднегодовую корову, кг Расход кормов на 1 корову, корм.ед. Ранги Разность рангов d = Nx - Ny d2
x y Nx Ny
3280 48,2 8 9 -1 1
2920 43,1 15 17 -2 4
5140 60,7 1 1 0 0
4630 60,1 4 2 2 4
4950 59,4 3 3 0 0
5000 52,5 2 8 -6 36
2790 44 16 16 0 0
4340 54,2 5 4 1 1
4160 53,2 6 7 -1 1
2660 46,4 18 12 6 36
2960 47,1 13,5 11 2,5 6,25
3230 46,1 9,5 14 -4,5 20,25
3480 53,9 7 5 2 4
3230 53,4 9,5 6 3,5 12,25
2370 39,4 20 20 0 0
2610 40,2 19 19 0 0
3000 45,5 12 15 -3 9
2960 41,4 13,5 18 -4,5 20,25
3100 47,8 11 10 1 1
2720 46,3 17 13 4 16
n = 20 ∑ d 2 = 172
ρ = 0,871

Полученное значение коэффициента корреляции рангов Спирмэна свидетельствует о сильной прямой связи между удоем молока и расходом кормов на 1 корову, т.е. при увеличении расхода кормов в пересчете на 1 корову увеличивается и удой молока на среднегодовую корову.

Удой молока на среднегодовую корову, кг Удельный вес чистопородных коров в стаде, % Ранги Разность рангов d = Nx - Ny d2
x y Nx Ny
3280 61 8 7 1 1
2920 54 15 11 4 16
5140 70 1 3 -2 4
4630 67 4 5 -1 1
4950 71 3 2 1 1
5000 74 2 1 1 1
2790 45 16 19 -3 9
4340 68 5 4 1 1
4160 65 6 6 0 0
2660 51 18 16 2 4
2960 52 13,5 13 0,5 0,25
3230 57 9,5 9 0,5 0,25
3480 58 7 8 -1 1
3230 52 9,5 13 -3,5 12,25
2370 44 20 20 0 0
2610 50 19 17 2 4
3000 52 12 13 -1 1
2960 49 13,5 18 -4,5 20,25
3100 53 11 12 -1 1
2720 57 17 9 8 64
n = 20 ∑ d 2 = 142
ρ = 0,893

Значение положительно, поэтому имеемхарактеризует сильную прямую связь между удоем молока и удельным весом чистопородных коров в стаде и показывает, что вариация результативного признака на 89,3 % обусловлена вариацией факторного признака (согласно коэффициенту Спирмэна).

Расход кормов на 1 корову, корм.ед. Удельный вес чистопородных коров в стаде, % Ранги Разность рангов d = Nx - Ny d2
x y Nx Ny
48,2 61 9 7 2 4
43,1 54 17 11 6 36
60,7 70 1 3 -2 4
60,1 67 2 5 -3 9
59,4 71 3 2 1 1
52,5 74 8 1 7 49
44 45 16 19 -3 9
54,2 68 4 4 0 0
53,2 65 7 6 1 1
46,4 51 12 16 -4 16
47,1 52 11 13 -2 4
46,1 57 14 9 5 25
53,9 58 5 8 -3 9
53,4 52 6 13 -7 49
39,4 44 20 20 0 0
40,2 50 19 17 2 4
45,5 52 15 13 2 4
41,4 49 18 18 0 0
47,8 53 10 12 -2 4
46,3 57 13 9 4 16
n = 20 ∑ d 2 = 244
ρ = 0,817

О сильной прямой зависимости между расходом кормов в пересчете на 1 корову и удельным весом чистопородных коров в стаде говорит значение коэффициента. Чем выше удельный вес, тем выше расход кормов.

Но следует иметь в виду, что, поскольку коэффициент Спирмэна учитывает разность только рангов, а не самих значений признаков, он менее точен по сравнению с линейным коэффициентом корреляции. Воспользуемся последним.

Воспользуемся программным пакетом Stata 7.

Корреляционная матрица имеет вид:

. corrudkormvessst

(obs=20)

| ud korm ves sst

-------------+------------------------------------

ud | 1.0000

korm | 0.8851 1.0000

ves | 0.9401 0.8290 1.0000

sst | -0.7875 -0.6497 -0.7587 1.0000

· ud – удой молока на среднегодовую корову,

· korm – расход кормов на 1 корову,

· ves – удельный вес чистопородных коров в стаде,

· sst – себестоимость молока за 1 кг.

Можно сделать вывод, что присутствует обратная связь между себестоимостью и удоем молока (r = - 0,79), себестоимостью и удельным весом (r = - 0,76),себестоимостью и расходом кормов (r = - 0,65).Имеется сильная прямая связи между удоем молока и расходом кормов (r = 0,89), удоем молока и удельным весом (r = 0,94), расходом кормов и удельным весом (r = 0,83). Если сравнивать значения, полученные линейным коэффициентом корреляции и ранговым коэффициентом Спирмэна, то расхождения не превысят 8 %. В большинстве же своем погрешность составляет около 1 %.

Теперь проверим коэффициенты корреляции на значимость:

. pwcorr ud korm ves sst

| ud korm ves sst

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 345
Бесплатно скачать Контрольная работа: Прогнозирование на основе регрессионных моделей