Контрольная работа: Прогнозирование на основе регрессионных моделей

_cons | 2.088534 .7538614 2.77 0.014 .4904194 3.686649

------------------------------------------------------------------------------

Хотя у этой модели и достаточно хороший коэффициент детерминации и согласно F-критерию Фишера оно значимо, параметры при переменных lnud, korm, ves не значимы по t-критерию Стьюдента с P-значениями 0.065, 0.321 и 0.996. Значит, эта модель не подходит.

Построим модель вида:

. reg sst lnud1 korm1 ves1

Source | SS df MS Number of obs = 20

-------------+------------------------------ F( 3, 16) = 10.32

Model | .031744654 3 .010581551 Prob > F = 0.0005

Residual | .016406296 16 .001025393 R-squared = 0.6593

-------------+------------------------------ Adj R-squared = 0.5954

Total | .04815095 19 .002534261 Root MSE = .03202

------------------------------------------------------------------------------

sst | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

lnud1 | 14.46292 6.110319 2.37 0.031 1.509625 27.41622

korm1 | -5.633853 5.967609 -0.94 0.359 -18.28462 7.016912

ves1 | .6831225 6.892859 0.10 0.922 -13.92909 15.29533

_cons | -1.33304 .6029802 -2.21 0.042 -2.611301 -.0547791

------------------------------------------------------------------------------

Видим что коэффициент детерминации хорош - 0,659 и по F-критерию Фишера уравнение значимо. Но параметры при переменных korm1, ves1 не значимы по t-критерию Стьюдента с P-значениями 0.359 и 0.922. Значит, эта модель не подходит.

Будем рассматривать различные комбинации переменных при включении в модель. Построим модель вида:

. reg sst lnud korm1 ves1

Source | SS df MS Number of obs = 20

-------------+------------------------------ F( 3, 16) = 10.09

Model | .031497211 3 .01049907 Prob > F = 0.0006

Residual | .016653739 16 .001040859 R-squared = 0.6541

-------------+------------------------------ Adj R-squared = 0.5893

Total | .04815095 19 .002534261 Root MSE = .03226

------------------------------------------------------------------------------

К-во Просмотров: 351
Бесплатно скачать Контрольная работа: Прогнозирование на основе регрессионных моделей