Контрольная работа: Прогнозирование на основе регрессионных моделей
sst | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lnud | -.1672727 .0297095 -5.63 0.000 -.22969 -.1048553
_cons | 1.703191 .241499 7.05 0.000 1.19582 2.210561
------------------------------------------------------------------------------
В итоге получили модель . Это уравнение значимо согласно F-критерию Фишера, и параметр при переменной lnud и константа значимы по t-критерию Стьюдента. 63,78 % суммы квадратов отклонений переменной sst от среднего значения объясняется переменными модели. А при увеличении удоя молока на 2,72 % себестоимость снижается на 0,17 %.
. sw reg sst lnud1 korm ves korm1 ves1 lnud2 korm2 ves2,pe(0.05)
begin with empty model
p = 0.0000 < 0.0500 adding lnud1
Source | SS df MS Number of obs = 20
-------------+------------------------------ F( 1, 18) = 32.04
Model | .030830369 1 .030830369 Prob > F = 0.0000
Residual | .017320581 18 .000962254 R-squared = 0.6403
-------------+------------------------------ Adj R-squared = 0.6203
Total | .04815095 19 .002534261 Root MSE = .03102
------------------------------------------------------------------------------
sst | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lnud1 | 11.2229 1.982717 5.66 0.000 7.057366 15.38843
_cons | -1.038311 .2443161 -4.25 0.000 -1.5516 -.5250216
------------------------------------------------------------------------------
Получили модель . Это уравнение значимо по F-критерию Фишера, и параметр при переменной lnud1 и константа значимы по t-критерию Стьюдента. 64,03 % суммы квадратов отклонений переменной sst от среднего значения объясняется переменными модели.
Сделаем выбор между этими двумя моделями. Представим критерии выбора модели в следующей таблице:
Модель | Критерий | ||||
R-квадрат | Скорректированный R-квадрат | Акейка | Шварца | σост | |
0.6378 | 0.6177 | -13,9896 | -6,89499 | 0,0302959 | |
0.6403 | 0.6203 | -14,0032 | -6,90180 | 0,03019289 |
Из данной таблицы видно, что по всем критериям гиперболическая модель лучше линейной.
Проверим регрессию на автокорреляцию остатков:
. regdw sst lnud1,t(lnud1) force
Source | SS df MS Number of obs = 20
-------------+------------------------------ F( 1, 18) = 32.04
Model | .030830369 1 .030830369 Prob > F = 0.0000