Контрольная работа: Прогнозирование на основе регрессионных моделей
------------------------------------------------------------------------------
Эта модель также не подходит, поскольку параметры при всех переменных не значимы согласно t-критерию Стьюдента.
Рассмотрим модель:
. reg sst lnud2 korm2 ves2
Source | SS df MS Number of obs = 20
-------------+------------------------------ F( 3, 16) = 10.39
Model | .031819188 3 .010606396 Prob > F = 0.0005
Residual | .016331762 16 .001020735 R-squared = 0.6608
-------------+------------------------------ Adj R-squared = 0.5972
Total | .04815095 19 .002534261 Root MSE = .03195
------------------------------------------------------------------------------
sst | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lnud2 | -.0150021 .0079436 -1.89 0.077 -.0318418 .0018377
korm2 | .000028 .0000263 1.07 0.302 -.0000277 .0000838
ves2 | 2.49e-06 .0000227 0.11 0.914 -.0000457 .0000507
_cons | 1.258054 .4178871 3.01 0.008 .3721731 2.143935
------------------------------------------------------------------------------
И в этой модели параметры при переменных не значимы по t-критерию Стьюдента. Отбрасываем эту модель.
Воспользуемся процедурой пошагового отбора регрессоров при построении множественной регрессии. При этом из исходного набора объясняющих переменных будут включаться в число регрессоров в первую очередь те переменные, которые имеют больший уровень значимости. Вначале включим в набор переменных переменную , а затем переменную .
. sw reg sst lnud korm ves korm1 ves1 lnud2 korm2 ves2,pe(0.05)
begin with empty model
p = 0.0000 < 0.0500 adding lnud
Source | SS df MS Number of obs = 20
-------------+------------------------------ F( 1, 18) = 31.70
Model | .030711968 1 .030711968 Prob > F = 0.0000
Residual | .017438982 18 .000968832 R-squared = 0.6378
-------------+------------------------------ Adj R-squared = 0.6177
Total | .04815095 19 .002534261 Root MSE = .03113