Контрольная работа: Производная дифференциал и интеграл

Из получаем , откуда , .

+ _ +

______________________________________ x

-3 11

Так как на интервалах и производная положительна, т.е. , то график функции на указанных интервалах возрастает. Так как на интервале производная отрицательна, т.е. , то на указанном интервале график функции убывает.

Так как при переходе через точки , производная функции меняет знаки и эти точки входят в область определения функции, то , - точки локального экстремума. Причем точка локального минимума: (так как при переходе через нее производная меняет знак с "+" на "-"); - точка локального максимума: (так как при переходе через нее производная меняет знак с "-" на "+").

4. Неопределенный интеграл

Часто возникает задача, обратная той, которая решалась в дифференциальном исчислении, а именно: дана функция , найти функцию , такую, что .

Функция называется первообразной для данной функции на некотором промежутке Х , если для любого выполняется равенство

.

Например, пусть , тогда за первообразную можно взять , поскольку .

В основе интегрального исчисления лежит теорема об общем виде первообразной: если – первообразная для функции на промежутке Х , то все первообразные для функции имеют вид , где С – произвольная постоянная.

Выражение вида описывает все первообразные для функции . Действительно, для любой постоянной С

.

Пусть наряду с данной первообразной функция – также первообразная для . Тогда должны выполняться равенства

,

откуда . Следовательно, разность этих первообразных будет тождественно равна константе или .

Действие нахождения первообразной называется интегрированием функции .

Доказанная теорема позволяет ввести основное понятие интегрального исчисления: если – первообразная для , то совокупность функций , где С – произвольная постоянная, называется неопределенным интегралом от функции , который обозначается следующим образом

.

Геометрически неопределенный интеграл представляет собой семейство плоских кривых , называемых интегральными .

Для того, чтобы проверить, правильно ли выполнено интегрирование, надо взять производную от результата и убедиться, что получена подынтегральная функция . Как всякая обратная операция, интегрирование – более сложное действие, чем дифференцирование.

Приведем основные свойства неопределенного интеграла:

1. производная неопределенного интеграла равна подынтегральной функции

;

2. неопределенный интеграл от алгебраической суммы функций равен сумме интегралов от слагаемых функций

;

3. постоянный множитель можно выносить за знак неопределенного интеграла

.

Значения интегралов от основных элементарных функций получаются из формул дифференцирования этих функций. Приведем таблицу основных интегралов :

К-во Просмотров: 480
Бесплатно скачать Контрольная работа: Производная дифференциал и интеграл