Контрольная работа: Система линейных уравнений
xk = d′k + c′k k+1 xk+1 + …+ ckn xn .
Неизвестные хk+1, хk+2 , …,хп называются свободными. Им можно придать различные значения и затем из системы (6) найти значения неизвестных х1, х2 , …,х k . Таким образом, в случае k < п совместная система уравнений (6) имеет бесчисленное множество решений.
Заметим, что если в процессе приведения системы (6) к системе (11) была произведена перенумерация неизвестных, то в системе (11) необходимо вернуться к их первоначальной нумерации.
На практике процесс решения системы уравнений облегчается тем, что указанным выше преобразованиям подвергают не саму систему, а матрицу, составленную из коэффициентов уравнений системы (6) и их свободных членов. При этом каждому элементарному преобразованию, проведенному над системой (6), соответствует преобразование над матрицей (12): вычеркивание строки, все элементы которой состоят из нулей, прибавление к элементам некоторой строки соответствующих элементов другой строки, умноженных на некоторое число, и перестановка двух столбцов матрицы (12).
Пример 1. Решить методом Гаусса систему уравнений
x 1 – 2 x 2 + x 3 + x 4 = –1;
3 x 1 + 2 x 2 – 3 x 3 – 4 x 4 = 2;
2 x 1 – x 2 + 2 x 3 – 3 x 4 = 9;
x 1 + 3 x 2 – 3 x 3 – x 4 = –1.
5. Критерий совместности общей системы линейных уравнений
Как уже было отмечено, под общей системой линейных уравнений мы понимаем систему (2) в которой число неизвестных необязательно совпадает с числом уравнений.
Пусть дана общая система линейных уравнений (2)и требуется установить признак существования решения этой системы, т.е. условия, при которых система (2)является совместной.
Из коэффициентов при неизвестных и свободных членов системы (2) составим матрицу
a11 a12 … a1n
A = a21 a22 … a2n
……………………
am1 am2 … amn
которую назовем основной матрицей системы (2), и матрицу
a11 a12 … a1n b1
B = a21 a22 … a2n b2
……………………… …… (13)
am 1 am 2 … amn bm
которую назовем расширенной матрицей системы (2).
Теорема 2.1. Для того чтобы система (2) линейных неоднородных уравнений была совместной, необходимо и достаточно, чтобы ранг расширенной матрицы системы был равен рангу ее основной матрицы.
Доказательство. Необходимость. Пусть система (2) совместна и c 1 , c2 ,..., сп – некоторое ее решение. Тогда имеют место равенства:
а11 с1 + а12 с2 + …+ а1 n сn = b1 ;
а21 с1 + а22 с2 + …+ а2 n сn = b2 ;
. ……………………………………
аm1 с1 + аm2 с2 + …+ аm n сn = bm
из которых следует, что последний столбец расширенной матрицы (13) есть линейная комбинация остальных ее столбцов с коэффициентами с1 , с2 ,..., сп . Согласно предложению 2, последний столбец матрицы В может быть вычеркнут без изменения ее ранга. При этом мы из матрицы В получим матрицу А. Таким образом, если ci, cz ,..., сп — решение системы уравнении (2), то rangА = rangВ .
Достаточность. Пусть теперь rangA = rangВ. Покажем, что при этом система уравнений (2) совместна. Рассмотрим r базисных столбцов матрицы А. Очевидно, что они будут базисными столбцами и матрицы В. Согласно теореме о базисных строках и столбцах, последний столбец матрицы В можно представить как линейную комбинацию базисных столбцов, а следовательно, и как линейную комбинацию всех столбцов матрицы А, т.е.