Контрольная работа: Сходимость рядов
Ряд будет сходиться при .
1)
в интервале ряд сходится.
2)
в интервале 3<x<8 ряд сходится.
Общий интервал сходимости –2<x<8.
На концах интервала х=-2, имеем ряд:
— расходящийся гармонический ряд.
в п.9.3.1 б) показано, что ряд сходится условно.
Ответ: (-2,8]
9.3.3.
а)
Ряд сходится при условии
1)
Решим неравенство:
корней нет, следовательно: — всегда.
Ветви параболы направлены вверх, получаем два интервала: Здесь ряд сходится.
Исследуем концы интервалов:
1) . Получаем ряд: . Ряд расходится, т.к. все его члены не меньше расходящегося гармонического ряда .
2)