Контрольная работа: Сходимость рядов

.

Ряд сходится при .

1) интервал сходимости .

2) интервал сходимости .

Исследуем границы интервала.


1)

По теореме Лейбница ряд сходится, причем условно, т.к. ряд — расходится.

2) .

Сравним с рядом по второму признаку сравнения

расходится, то расходится и ряд .

3.9.4.

а)


Ряд сходится при

1) тогда

корней нет, .

Решаем неравенство:

.

Решаем полученное неравенство:

В промежутке (1,3) ряд сходится.

На концах интервала имеем:

1)

Ряд расходится, т.к. .

К-во Просмотров: 405
Бесплатно скачать Контрольная работа: Сходимость рядов