Контрольная работа: Статистичні методи оцінки вимірів в експериментальних дослідженнях
4. Установлюють нормативне відхилення t, значення якого задають, наприклад при великій точності вимірювань t=3.0, при малій – t=2.0, можна прийняти t=2.5.
5. Із (6.26) визначають . В процесі експерименту число вимірів не повинно бути менше .
Приклад
при прийманні споруди, комісія в якості одного із параметрів, вимірює її ширину. Необхідно виконати 25 вимірів, допустиме відхилення параметра м. Необхідно визначити, з якою вірогідністю комісія оцінює даний параметр. Попереднє обчислення значення м.
Допустиме відхилення параметра м. з рівняння (6.27) запишемо . ; . У відповідності з таблицею (6.). Надійна ймовірність для це низька ймовірність. Похибка перевищує надійний інтервал м, згідно формули (6.) ,буде зустрічатися один раз із , тобто із чотирьох вимірювань. Це не допустимо. Вирахуємо мінімальну кількість вимірів, з надійною ймовірністю РД , рівною 0,9 і 0,95. За формулою (6.27) маємо виміри при РД =0,90 і 64 виміри при РД =0,95. Результати вимірювань за допомогою і справедливі при . Для знаходження границь надійного інтервалу при малих значеннях застосовують метод запропонований в 1908 році англійським математиком
В.С. Гессетом (псевдонім Стьюдент). Криві розподілення Стьюдента у разі переходять в криві нормального розпреділення (рис. 6.1).
Для малої вибірки надійний інтервал
(6.28)
де - коефіцієнт Стьюдента, який приймається з табл. 6.2 в залежності від значення надійної ймовірності Фст знаючи mст , можна визначити дійсне значення величини, що вивчається для малої вибірки:
(6.29).
Можлива інша постановка задачі. Маючи n відомих вимірів малої вибірки необхідно визначити необхідну ймовірність РД за умовою, що похибка середнього значення не вийде за межі .
Задачу розв’язують у такій послідовності:
1. Визначають середнє значення , і .
2. За допомогою величини , відомого n і таблиці 6.2 визначають надійну ймовірність.
Інтегральна формула Лапласа
Надійним називається інтервал значень хі у який попадає правдиве значення хд величини, що вимірюється, попадає в даний інтервал.
Надійною ймовірністю ( вірогідністю) вимірювання називається імовірністю Рд того, що правдиве значення хд величини, що вимірюється попадає в даний надійний інтервал.
Ця величина визначається в долях одиниці або в процентах. Необхідно встановити ймовірність того, що хд попаде в зону а<xд <в. Надійна імовірність Рд описується виразом:
(6.30)
де Ф(t) – функція Лапласса, аргументом якої є відношення µ до середньоквадратичного σ, тобто
t=µ/ σ (6.31)
µ=b-x; µ= - (a-x), t – гарантований коефіцієнт.
Функція Ф(t) – це інтегральна функція Лапласа:
(6.32)
Її можна записати так:
(6.33)
Числові значення Ф(t), приведені в додатку табл. I.
Коли задані межі появи події А(m1 i m2 ), які відрізняються від np на [x], то інтегральна формула Лапласа набуде такого вигляду:
(6.34)