Контрольная работа: Типовой расчет
3. Исследовать ряд на сходимость
Решение.
Так как , то рассмотрим ряд
, тогда
Воспользуемся признаком Даламбера.
,
Тогда,
Так как , то ряд сходится. Значит, исходный ряд сходится по теореме о сравнении рядов.
Ответ: Ряд сходится.
4. Исследовать ряд на сходимость
Решение.
Преобразуем n – член этого ряда.
Сравним ряд с рядом , пользуясь предельным признаком сравнения:
,
Тогда,
Поскольку А = 1 (0<A<+∞) – действительное число. Следовательно, ряды либо сходятся, либо расходятся. Ряд - является рядом Дирихле. Так как α = 3 > 1, то данный ряд сходится. Следовательно, и сравниваемый ряд тоже сходится.
Ответ: ряд сходится.
5. Исследовать ряд на сходимость
Решение.
Воспользуемся признаком Даламбера.
,
Находим m по формуле: