Контрольная работа: Типовой расчет
2)
Следовательно, ряд условно сходится.
Проверим абсолютную сходимость ряда . Рассмотрим ряд .
Воспользуемся признаком Даламбера:
,
Находим m по формуле:
Тогда:
Следовательно, ряд
сходится абсолютно.
Вычисляем члены ряда с точностью до 4 цифр после запятой до тех пор, пока какой-нибудь член ряда по модулю не будет меньше α. = 0,001:
а1 = -1,5 а2 = 0,1042 а3 = - 0,0016 а4 = 0,0000093
Для приближённого вычисления ряда достаточно первых трех членов ряда (по следствию признака Лейбница: сумма сходящегося знакопеременного числового ряда не превышает его первого члена). Следовательно, ошибка при вычислении не превысит 0,0000093, а, значит, и . Требуемая точность достигнута.
Следовательно:
.
Ответ: .
8. Найти область сходимости функционального ряда
Решение.
Рассмотрим два интервала:
1)
Проверим необходимый признак сходимости рядов:
Необходимый признак не выполняется. Следовательно, при ряд расходится.
2) , то есть
Проверим необходимый признак сходимости рядов:
Необходимый признак не выполняется. Следовательно, при ряд расходится.
При имеем: