Контрольная работа: Управление динамической системой

Для того чтобы из системы (1) найти функции ω(t) и μ(t), необходимо понизить степень системы, то есть избавиться от производных второго порядка. Для этого введем функцию Z(t)= μ'(t), получим систему вида:

(2)

Решая систему численно, получаем табличные значения ω(t) и μ(t), по которым строим графики ω(t) (рисунок 2) и μ(t) (рисунок 3). По графикам хорошо видно, что ω(t) и μ(t) стремятся к равновесным значениям ω0=31.948 и μ0=0.5, ω(t)→ 31.948, μ(t) →0.5, что соответствует вычислениям.

Рисунок 2 – График функции ω(t)

Рисунок 3 – График функции μ(t)

5 Линеаризация и численное решение разомкнутой систем ы

Линеаризуем систему (2) в окрестности точки равновесия. Для этого выведем систему из равновесия, придав u, μ, ω малые приращения ∆u, ∆μ, ∆ω→0. Соответственно придается приращение Z, ∆Z→0.

(3)

Теперь разложим функции Mc (ω) и Mg (ω,μ) в ряды Тейлора по формулам:


Пренебрегая остаточными членами Og (ω,μ) и Oc (ω), получим систему вида:

Или

(4)

Решая систему численно, получаем табличные значения ∆ω(t) и ∆μ(t), по которым строим графики ∆ω(t) (рисунок 4) и ∆μ(t) (рисунок 5).

Рисунок 4 – График ∆ω(t)


Рисунок 5 – График ∆μ(t)

6 Замкнутая систем а

В векторно-матричной форме линейную систему с непрерывным временем можно записать в виде:

, где


А =(5)

С дискретным временем:

Xk +1 = A Xk + B Uk , где

Замкнем систему, положив , где k – коэффициент регулятора. Из соотношений (3) получим , и тогда с непрерывным временем система примет вид:


К-во Просмотров: 374
Бесплатно скачать Контрольная работа: Управление динамической системой