Контрольная работа: Уравнения линейной регрессии

Линейная модель имеет вид

Коэффициент регрессии показывает, что выпуск продукции Y возрастает в среднем на 0,909 млн. руб. при увеличении объема капиталовложений Х на 1 млн. руб.

2. Вычислим остатки , остаточную сумму квадратов , найдем остаточную дисперсию по формуле:

Расчеты представлены в табл. 2.


Рис. 1. График остатков ε.

3. Проверим выполнение предпосылок МНК на основе критерия Дарбина-Уотсона.

Табл. 1.3.

0,584
2,120 0,479
0,206 1,313
6,022 1,711
1,615 0,001
0,000 0,001
0,527 0,476
5,157 2,500
13,228 4,227
2,462 0,728
31,337 12,020

d1=0,88; d2=1,32 для α=0,05, n=10, k=1.

,

значит, ряд остатков не коррелирован.

4. Осуществим проверку значимости параметров уравнения на основе t-критерия Стьюдента. (α=0,05).

для ν=8; α=0,05.

Расчет значения произведен в табл. 2. Получим:


Так как , то можно сделать вывод, что коэффициенты регрессии a и b с вероятностью 0,95 значимы.

5. Найдем коэффициент корреляции по формуле

Расчеты произведем в табл. 2.

Значит,. Т.о. связь между объемом капиталовложений Х и выпуском продукции Y можно считать тесной, т.к. .

Коэффициент детерминации найдем по формуле . Значит, вариация объема выпуска продукции Y на 98,4% объясняется вариацией объема капиталовложений X.

Проверим значимость уравнения регрессии с помощью F-критерия Фишера

К-во Просмотров: 401
Бесплатно скачать Контрольная работа: Уравнения линейной регрессии