Контрольная работа: Уравнения линейной регрессии

Проведем линеаризацию переменных путем логарифмирования обеих частей уравнения.

Табл. 1.6.

t y x Y Yx
1 43 33 1,633 53,889 1089 42,343 0,657 0,432 0,015
2 27 17 1,431 24,327 289 27,220 -0,220 0,048 0,008
3 32 23 1,505 34,615 529 32,126 -0,126 0,016 0,004
4 29 17 1,462 24,854 289 27,220 1,780 3,168 0,061
5 45 36 1,653 59,508 1296 46,001 -1,001 1,002 0,022
6 35 25 1,544 38,600 625 33,950 1,050 1,102 0,030
7 47 39 1,672 65,208 1521 49,974 -2,974 8,845 0,063
8 32 20 1,505 30,100 400 29,571 2,429 5,900 0,076
9 22 13 1,342 17,446 169 24,374 -2,374 5,636 0,108
10 24 12 1,380 16,560 144 23,710 0,290 0,084 0,012
336 235 15,127 365,107 6351 26,233 0,399
Средн 33,6 23,5 1,513 36,511 635,1

Перейдем к исходным переменным, выполнив потенцирование уравнения.


Найдем индекс корреляции.

,

значит, связь между объемом капиталовложений Х и выпуском продукции Y тесная, т.к. .

Индекс детерминации найдем по формуле . Значит, вариация объема выпуска продукции Y на 96,2% объясняется вариацией объема капиталовложений X.

Проверим значимость уравнения на основе F-критерия Фишера.

F>Fтабл (202,528>5,32),

значит, уравнение статистически значимо.

Оценим точность модели на основе средней относительной ошибки аппроксимации.

,

значит, расчетные значения ŷ для гиперболической модели отличаются от фактических значений на 3,99%. Модель точная.

9. Сравним полученные модели.


Табл. 1.7.

Модель регрессии F-критерий
Линейная 0,992 0,984 492 3,2
Гиперболическая 0,756 0,572 10,692 14,45
Степенная 0,991 0,982 436,448 3,46
Показательная 0,981 0,962 202,528 3,99

Наилучшей моделью является линейная модель (по максимуму критерия корреляции, детерминации, F-критерия и минимальной средней ошибке аппроксимации).

Рис. 3. Построенные уравнения регрессии.

Задача 2 (а, б)

Для каждого варианта даны по две СФМ, которые записаны в виде матриц коэффициентов модели. Необходимо записать системы одновременных уравнений и проверить обе системы на идентифицируемость.

Табл. 2.1.

Номер варианта Номер уравнения Задача 2а Задача 2б
переменные переменные
y1 y2 y3 x1 x2 x3 x4 y1 y2 y3 x1 x2 x3 x4
6 1 -1 b12 b13 a11 a12 0 0 -1 0 b13 a11 a12 0 a14
2 b21 -1 b23 a21 0 0 a24 b21 -1 0 a21 0 a23 a24
3 0 b32 -1 a31 a32 a33 0 b31 0 -1 a31 a32 0 a34

Решение

a) CФМ имеет вид:

Проверим систему на идентифицируемость. Для этого проверим каждое уравнение системы на выполнение необходимого и достаточного условия идентификации.

К-во Просмотров: 397
Бесплатно скачать Контрольная работа: Уравнения линейной регрессии