Контрольная работа: Уравнения линейной регрессии
Fтаб=5,32, т.к. k1=1, k2=8, α=0,05
т.к. F значительно больше Fтабл, то можно сделать вывод, что уравнение регрессии с вероятностью 95% статистически значимо.
Оценим точность модели на основе использования средней относительной ошибки аппроксимации.
Расчеты произведены в табл. 2.
,
значит, линейную модель можно считать точной, т.к. Е<5%/
6. С помощью линейной модели осуществим прогноз Y при α=0,1 и х=0,8хmax
Определим границы прогноза. t0,1;8=1,86
Найдем границы интервала:
7. Представим графически фактические и модельные значения Y, точки прогноза.
Рис. 2. Фактические данные, линейная модель и результаты прогнозирования.
8. а) Составим уравнение гиперболической модели. Гиперболическая модель имеет вид
;
Проведем линеаризацию переменной путем замены .
Расчеты произведем в табл. 3.
Модель имеет вид:
Табл.1.4.
t | y | x | Х | уХ | |||||
1 | 43 | 33 | 0,030 | 1,290 | 0,001 | 36,870 | 6,130 | 37,577 | 0,143 |
2 | 27 | 17 | 0,059 | 1,593 | 0,003 | 32,135 | -5,135 | 26,368 | 0,190 |
3 | 32 | 23 | 0,043 | 1,376 | 0,002 | 34,683 | -2,683 | 7,198 | 0,084 |
4 | 29 | 17 | 0,059 | 1,711 | 0,003 | 32,135 | -3,135 | 9,828 | 0,108 |
5 | 45 | 36 | 0,028 | 1,260 | 0,001 | 37,289 | 7,711 | 59,460 | 0,171 |
6 | 35 | 25 | 0,040 | 1,400 | 0,002 | 35,260 | -0,260 | 0,068 | 0,007 |
7 | 47 | 39 | 0,026 | 1,222 | 0,001 | 37,644 | 9,356 | 87,535 | 0,199 |
8 | 32 | 20 | 0,050 | 1,600 | 0,003 | 33,600 | -1,600 | 2,560 | 0,050 |
9 | 22 | 13 | 0,077 | 1,694 | 0,006 | 29,131 | -7,131 | 50,851 | 0,324 |
10 | 24 | 12 | 0,083 | 1,992 | 0,007 | 28,067 | -4,067 | 16,540 | 0,169 |
∑ | 336 | 235 | 0,495 | 15,138 | 0,029 | 297,985 | 1,445 | ||
Средн | 33,6 | 23,5 | 0,050 | 1,514 | 0,003 |
Найдем индекс корреляции по формуле
,