Курсовая работа: Анализ методов определения минимального, максимального значения функции при наличии ограничений

4. Нахождение экстремума функции при наличии ограничений

5. Синтез оптимальной по быстродействию системы с помощью принципа максимума Понтрягина

Заключение

Список использованной литературы

Приложение

функция переменная экстремум максимум


Введение

При решении конкретной задачи оптимизации исследователь прежде всего должен выбрать математический метод, который приводил бы к конечным результатам с наименьшими затратами на вычисления или же давал возможность получить наибольший объем информации об искомом решении. Выбор того или иного метода в значительной степени определяется постановкой оптимальной задачи, а также используемой математической моделью объекта оптимизации.

В настоящее время для решения оптимальных задач применяют в основном следующие методы:

· методы исследования функций классического анализа;

· методы, основанные на использовании неопределенных множителей Лагранжа;

· вариационное исчисление;

· динамическое программирование;

· принцип максимума;

· линейное программирование;

· нелинейное программирование.

Как правило, нельзя рекомендовать какой-либо один метод, который можно использовать для решения всех без исключения задач, возникающих на практике. Одни методы в этом отношении являются более общими, другие - менее общими. Наконец, целую группу методов (методы исследования функций классического анализа, метод множителей Лагранжа, методы нелинейного программирования) на определенных этапах решения оптимальной задачи можно применять в сочетании с другими методами, например динамическим программированием или принципом максимума.

Отметим также, что некоторые методы специально разработаны или наилучшим образом подходят для решения оптимальных задач с математическими моделями определенного вида. Так, математический аппарат линейного программирования, специально создан для решения задач с линейными критериями оптимальности и линейными ограничениями на переменные и позволяет решать большинство задач, сформулированных в такой постановке.

Динамическое программирование хорошо приспособлено для решения задач оптимизации многостадийных процессов, особенно тех, в которых состояние каждой стадии характеризуется относительно небольшим числом переменных состояния.

Пожалуй, наилучшим путем при выборе метода оптимизации, наиболее пригодного для решения соответствующей задачи, следует признать исследование возможностей и опыта применения различных методов оптимизации.


1. Анализ методов определения минимального и максимального значения функции многих переменных без ограничений

В данном разделе будет рассматриваться задача безусловной оптимизации, т.е. данная задача характеризуется тем, что минимум функции f: Rm ® R ищется на всем пространстве: f(x) ® min, x Î Rm .

Методы безусловной оптимизации функции многих переменных отличаются относительно высоким уровнем развития по сравнению с другими методами нелинейного программирования. Условно их можно разбить на три широких класса по типу используемой информации:

· методы прямого поиска, основанные на вычислении только значений целевой функции;

· градиентные методы, в которых используются точные значения первых производных f (x);

· методы второго порядка, в которых наряду с первыми производными используются также вторые производные функции f (x).

Методы прямого поиска

Здесь предполагается, что f(x) непрерывна и унимодальная. Если рассматриваемые методы применяются для анализа мультимодальных функций, то приходится ограничиваться идентификацией локальных минимумов. К особенностям этих методов можно отнести:

· относительная простота соответствующих вычислительных процедур, которые быстро реализуются и легко корректируются;

· не требуют явного выражения целевой функции в аналитическом виде;

· может требовать более значительных затрат времени по сравнению с методами, основанными на производных.

Метод поиска по симплексу

К-во Просмотров: 314
Бесплатно скачать Курсовая работа: Анализ методов определения минимального, максимального значения функции при наличии ограничений