Курсовая работа: Анализ рядов распределения

Эмпирическое корреляционное отношение показывает тесноту связи между группировочным и результативными признаками. Рассчитывается как корень квадратный из эмпирического коэффициента детерминации:

Эмпирическое корреляционное отношение , как и , может принимать значения от 0 до 1.

Если связь отсутствует, то =0. В этом случае =0, то есть групповые средние равны между собой и межгрупповой вариации нет. Значит группировочный признак - фактор не влияет на образование общей вариации.

Если связь функциональная, то =1. В этом случае дисперсия групповых средних равна общей дисперсии (), то есть внутригрупповой вариации нет. Это означает, что группировочный признак полностью определяет вариацию изучаемого результативного признака.

Чем ближе значение корреляционного отношения к единице, тем теснее, ближе к функциональной зависимости связь между признаками.

Для качественной оценки тесноты связи между признаками пользуются соотношениями Чэддока.

0 0-0,2 0,2-0,3 0,3-0,5 0,5-0,7 0,7-0,9 0,9-0,99 1
Сила связи отсутствует очень слабая слабая умеренная заметная тесная весьма тесная

функцио-

нальная

В примере , что свидетельствует о тесной связи между производительностью труда рабочих и их квалификацией.

2.2 Относительные характеристики вариации

При сравнении вариации различных признаков или одного признака в различных совокупностях, используют относительные характеристики вариации - коэффициенты вариации.

Коэффициенты вариации рассчитываются как отношение абсолютных характеристик вариации (R,d,s) к центру распределения и часто выражаются процентами. Линейный коэффициент вариации: . Квадратичный коэффициент вариации: . Коэффициент осциляции:

Квадратичный коэффициент вариации используют как критерий однородности совокупности. Совокупность считается однородной, если

Если центр распределения представлен медианой, то используют квартильный коэффициент вариации:

3. Теоретические кривые распределения

В вариационных рядах распределения существует определенная связь между изменением частот и значения варьирующего признака: частоты с ростом значения признака сначала увеличиваются, а затем после достижения какой-то максимальной величины в середине ряда уменьшаются. Значит, частоты в рядах изменяются закономерно в связи с изменением варьирующего признака. Такого рода закономерные изменения частот в вариационных рядах называются закономерностями распределения.

Анализ вариационных рядов предполагает выявление такой закономерности распределения, определение ее типа и построение теоретической кривой распределения, характеризующей данный тип распределения. Под кривой распределения понимают графическое изображение в виде непрерывной линии изменения частот в вариационном ряду, функционально связанного с изменением вариант. Эмпирической (фактической) кривой распределения является полигон. Под теоретическим распределением понимают вероятностное распределение частот в наблюдаемом вариационном ряду.

В практике статистического исследования встречаются распределения: нормальное, логарифмическое, биноминальное, Пуассона и др.

3.1 Нормальное распределение

При построении статистических моделей наиболее часто применяется нормальное распределение. Распределение непрерывной случайной величины х называют нормальным, если описывается следующей кривой:

где - ордината кривой нормального распределения (частости);

е=2,7182 - основание натурального логарифма;

p=3,1415 - постоянное число:

- нормированное отклонение.

Кривая нормального распределения симметрична относительно , поэтому величину называют центром распределения. На ее вид влияют значения и s. Чем больше s при неизменной , тем более плоской и растянутой вдоль оси абсцисс становится кривая, и наоборот.

Если s остается неизменной, а изменяется, то кривые нормального распределения имеют одинаковую форму, но отличаются положением максимальной ординаты.

Особенности кривой нормального распределения (рис.2):

Кривая симметрична и имеет максимум в точке, где .

Кривая асимптотически приближается к оси абсцисс, продолжаясь в обе стороны до бесконечности.

К-во Просмотров: 949
Бесплатно скачать Курсовая работа: Анализ рядов распределения