Курсовая работа: Анализ рядов распределения

Медиану можно определить графически, по кумуляте (см. лекцию "Сводка и группировка статистических данных"). Для этого последнюю ординату, равную сумме всех частот или частостей, делят пополам. Из полученной точки восстанавливают перпендикуляр до пересечения с кумулятой. Абсцисса точки пересечения и дает значение медианы.

1.3 Показатели дифференциации

Если возникает необходимость изучить структуру вариационного ряда более подробно, вычисляют значения признака, аналогичные медиане. Такие значения признака, которые делят все единицы распределения на равные численности, называют квантилями, или градиентами. Квартили и децили - частные случаи квантилей.

Квартилями (Q) называют значения признака, которые делят совокупность на четыре равные по числу единиц части. Децили (D) - признаки, делящие совокупность на десять равных частей.

Следовательно, кроме медианы, в ряду распределения имеются три квартиля и девять децилей. Медиана одновременно является вторым квартилем и пятым децилем. Расчет первого (Q1 ) и третьего (Q3 ) квартилей аналогичен расчету медианы, только вместо медианного интервала берется для первого квартиля интервал, в котором находится варианта, отсекающая ¼ численности частот, а для третьего квартиля - ¾ численности частот:

и .

Логика построения квинтилей и децилей аналогична.

2. Характеристики вариации

Показатели вариации характеризует колеблемость индивидуальных значений признака по отношению к среднему значению, что не менее важно, чем определение самой средней. Средняя не показывает строения совокупности, как располагаются около нее варианты осредняемого признака, сосредоточены ли они вблизи средней или значительно отклоняются от нее. Средняя величина признака в двух совокупностях может быть одинаковой, но в одном случае все индивидуальные значения отличаются от нее мало, а в другом эти отличия велики, т.е. в одном случае вариация признака мала, а в другом велика.

Это можно показать на таком примере. Предположим, что две бригады из 3-х человек каждая выполняют одинаковую работу. Количество деталей, изготовленных за смену отдельными рабочими, составило:

в первой бригаде - 95, 100, 105;

во второй бригаде - 75, 100, 125.

Средняя выработка на одного рабочего в бригадах составила

, .

Средняя выработка одинакова, но колеблемость выработки отдельных рабочих в первой бригаде значительно меньше, чем во второй.

Следовательно, чем больше варианты отдельных единиц совокупности различаются между собой, тем больше они отличаются от своей средней, и наоборот - варианты, мало отличающиеся друг от друга, более близки по значению к средней, которая в таком случае будет более реально представлять всю совокупность.

Поэтому для характеристики и измерения вариации признака в совокупности кроме средней используют следующие показатели:

абсолютные - вариационный размах, среднее линейное и среднее квадратическое отклонение, дисперсию;

относительные - коэффициенты вариации.

2.1 Абсолютные характеристики вариации

Вариационный размах (или размах вариации) - это разница между максимальным и минимальным значениями признака:

В нашем примере размах вариации сменной выработки рабочих составляет: в первой бригаде R=105-95=10 дет., во второй бригаде R=125-75=50 дет. (в 5 раз больше). Это говорит о том, что выработка 1-й бригады более "устойчива", но резервов роста выработки больше у второй бригады, т.к в случае достижения всеми рабочими максимальной для этой бригады выработки, ею может быть изготовлено 3*125=375 деталей, а в 1-й бригаде только 105*3=315 деталей.

Если крайние значения признака не типичны для совокупности, то используют квартильный или децильный размахи. Квартильный размах RQ = Q3 -Q1 охватывает 50% объема совокупности, децильный размах первый RD1 = D9 -D1 охватывает 80% данных, второй децильный размах RD2 = D8 -D2 - 60%.

Недостатком показателя вариационного размаха является, но что его величина не отражает все колебания признака.

Простейшим обобщающим показателем, отражающим все колебания признака, является среднее линейное отклонение, представляющее собой среднюю арифметическую абсолютных отклонений отдельных вариант от их средней величины: для несгруппированных данных

,

для сгруппированных данных

,

где хi - значение признака в дискретном ряду или середина интервала в интервальном распределении.

В вышеприведенных формулах разности в числителе взяты по модулю, иначе, согласно свойству средней арифметической, числитель всегда будет равен нулю. Поэтому среднее линейное отклонение в статистической практике применяют редко, только в тех случаях, когда суммирование показателей без учета знака имеет экономический смысл. С его помощью, например, анализируется состав работающих, рентабельность производства, оборот внешней торговли.

Дисперсия признака - это средний квадрат отклонений вариант от их средней величины:

К-во Просмотров: 950
Бесплатно скачать Курсовая работа: Анализ рядов распределения