Курсовая работа: Анализ рядов распределения

,

взвешенная дисперсия

.

Формулу для расчета дисперсии можно упростить:

Таким образом, дисперсия равна разности средней из квадратов вариант и квадрата средней из вариант совокупности:

.

Однако, вследствие суммирования квадратов отклонений дисперсия дает искаженное представление об отклонениях, поэтому ее на основе рассчитывают среднее квадратическое отклонение, которое показывает, на сколько в среднем отклоняются конкретные варианты признака от их среднего значения. Вычисляется путем извлечения квадратного корня из дисперсии:

для несгруппированных данных

,

для вариационного ряда

Чем меньше значение дисперсии и среднего квадратического отклонения, тем однороднее совокупность, тем более надежной (типичной) будет средняя величина.

Среднее линейное и среднее квадратичное отклонение - именованные числа, т.е. выражаются в единицах измерения признака, идентичны по содержанию и близки по значению. Рассчитывать абсолютные показатели вариации рекомендуется с помощью таблиц.

Таблица 3 - Расчет характеристик вариации (на примере срока данных о сменной выработке рабочих бригады)

Группы рабочих по выработке, шт. Число рабочих, Середина интервала, Расчетные значения
170-190 10 180 1800 -36 360 1296 12960
190-210 20 200 4000 -16 320 256 5120
210-230 50 220 11000 4 200 16 800
230-250 20 240 4800 24 480 576 11520
Итого: 100 - 21600 - 1360 - 30400

Среднесменная выработка рабочих:

Среднее линейное отклонение:

Дисперсия выработки:

Среднее квадратическое отклонение выработки отдельных рабочих от средней выработки:

.

2.1.1 Расчет дисперсии способом моментов

Вычисление дисперсий связано с громоздкими расчетами (особенно если средняя величина выражена большим числом с несколькими десятичными знаками). Расчеты можно упростить, если использовать упрощенную формулу и свойства дисперсии.

Дисперсия обладает следующими свойствами:

если все значения признака уменьшить или увеличить на одну и ту же величину А, то дисперсия от этого не уменьшится:

,

если все значения признака уменьшить или увеличить в одно и то же число раз (hраз), то дисперсия соответственно уменьшится или увеличится в раз.

То есть, если дисперсию уменьшенных значений признака описать следующим выражением

К-во Просмотров: 955
Бесплатно скачать Курсовая работа: Анализ рядов распределения