Курсовая работа: Анализ рядов распределения
Используя свойства дисперсии и сначала уменьшив все варианты совокупности на величину А, а затем разделив на величину интервала h, получим формулу вычисления дисперсии в вариационных рядах с равными интервалами способом моментов:
,
где - дисперсия, исчисленная по способу моментов;
h- величина интервала вариационного ряда;
- новые (преобразованные) значения вариант;
А- постоянная величина, в качестве которой используют середину интервала, обладающего наибольшей частотой; либо вариант, имеющий наибольшую частоту;
- квадрат момента первого порядка;
- момент второго порядка.
Выполним расчет дисперсии способом моментов на основе данных о сменной выработке рабочих бригады.
Таблица 4 - Расчет дисперсии по способу моментов
Группы рабочих по выработке, шт. | Число рабочих, | Середина интервала, | Расчетные значения | ||
170-190 | 10 | 180 | -2 | -20 | 40 |
190-210 | 20 | 200 | -1 | -20 | 20 |
210-230 | 50 | 220 | 0 | 0 | 0 |
230-250 | 20 | 240 | 1 | 20 | 20 |
Итого | 100 | - | - | -20 | 80 |
Порядок расчета:
определяем постоянное число А, это варианта с наибольшей частотой: А=220;
определяем ;
рассчитываем и ;
определяем моменты 1-го и 2-го порядка:
рассчитываем дисперсию:
2.1.2 Расчет дисперсии альтернативного признака
Среди признаков, изучаемых статистикой, есть и такие, которым свойственны лишь два взаимно исключающих значения.
Это альтернативные признаки.
Им придается соответственно два количественных значения: варианты 1 и 0.
Частостью варианты 1, которая обозначается p, является доля единиц, обладающих данным признаком. Разность 1-р=q является частостью варианты 0. Таким образом,
хi | wi |
1 | p |
0 | q |
Средняя арифметическая альтернативного признака
, т.кp+q=1.
Дисперсия альтернативного признака
, т.к1-р=q
Таким образом, дисперсия альтернативного признака равна произведению доли единиц, обладающих данным признаком, и доли единиц, не обладающих этим признаком.
Если значения 1 и 0 встречаются одинаково часто, т.е. p=q, дисперсия достигает своего максимума pq=0,25.