Курсовая работа: Анализ рядов распределения

Для определения медианы можно вместо кумулятивных частот использовать кумулятивные частости .

Медиана, как и мода, не зависит от крайних значений вариант, поэтому также применяется для характеристики центра в рядах распределения с неопределенными границами.

Свойство медианы : сумма абсолютных величин отклонений вариант от медианы меньше, чем от любой другой величины (в том числе и от средней арифметической):

Это свойство медианы используется на транспорте при проектировании расположения трамвайных и троллейбусных остановок, бензоколонок, сборочных пунктов и т. д.

Пример. На шоссе длиной 100 км расположено 10 гаражей. Для проектирования строительства бензоколонки были собраны данные о числе предполагаемых ездок на заправку по каждому гаражу.

Таблица 2 - Данные о количестве ездок на заправку по каждому гаражу.

Километр шоссе, на котором расположен гараж 7 26 28 37 40 46 60 78 86 92 Всего ездок
Проектируемое число ездок 10 15 5 20 5 25 15 30 10 65 200

Нужно поставить бензоколонку так, чтобы общий пробег автомашин на заправку был наименьшим.

Вариант 1. Если бензоколонку поставить в середине шоссе, т.е. на 50-ом километре (центр диапазона изменения признака), то пробеги с учетом числа ездок составят:

а) в одном направлении:

;

б) в противоположном:

;

в) общий пробег в оба направления: .

Вариант 2. Если бензоколонку поставить на среднем участке шоссе, определенном по формуле средней арифметической с учетом числа ездок:

Тогда пробеги составят:

а) в одном направлении:

б) в противоположном:

;

в) общий пробег в оба направления, равный меньше, чем в первом варианте на 438,5 км.

Вариант 3. Если поставить бензоколонку на 78-м километре, что будет соответствовать медиане по количеству ездок (накопленное число ездок для 60 км - 95, для 78 км - 125).

Тогда пробеги составят:

а) в одном направлении:

б) в противоположном:

;

в) общий пробег: , меньше общих пробегов, рассчитанных по предыдущим вариантам.

К-во Просмотров: 956
Бесплатно скачать Курсовая работа: Анализ рядов распределения