Курсовая работа: Аналіз типової системи автоматичного регулювання температури в печі

;

;

Диференціальне рівняння руху системи за каналом завдання-вихід матиме вигляд:

/3.5/

А відповідне рівняння статики:

/3.6/

З виразу /3.4/ знаходимо операторну форму диференційного рівняння, яке описує рух системи за каналом збурення-вихід:

Виконавши обернене перетворення Лапласа, одержимо:

/3.7/

Рівняння статики системи за каналом збурення:

/3.8/

5. Аналіз стійкості системи та визначення критичного значення коефіцієнта передачі регулятора

При розробці і настроюванні систем автоматичного керування важливо встановити вплив окремих параметрів на їх стійкість. Для визначення областей допустимих значень параметрів можуть бути використані критерії стійкості та загальний метод D-розбиття.

Зокрема, критичне значення параметру (коефіцієнта передачі чи постійної часу ) при якому система знаходиться на межі області стійкості можна визначити за критерієм Гурвіца. [2, c.131]

Запишемо характеристичне рівняння системи, передаточна функція якої /3.3/:

/4.1/

Складемо визначник Гурвіца для даного рівняння:

/4.2/

;

Головний визначник Гурвіца >0 і його мінори >0, >0, тому система з даними параметрами стійка.

Визначення критичного значення коефіцієнта передачі регулятора

Критичне значення коефіцієнта передачі підсилювача знайдемо, прийнявши його за невідомий у виразі /3.2/ та прирівнявши до нуля визначник Гурвіца:

;

/4.3/

Характеристичне рівняння замкнутої системи

/4.4/

Складемо мінор другого порядку визначника Гурвіца, оскільки він однозначно залежить від значення визначника Гурвіца ():

К-во Просмотров: 555
Бесплатно скачать Курсовая работа: Аналіз типової системи автоматичного регулювання температури в печі