Курсовая работа: Автоматизация питающего бункера чесальной машины
3
Таким образом, для исследуемой модели объекта размерность вектора состояний, определяемая размером матриц А и В равна трем и ранг матрицы управляемости М u также равен трем, что позволяет сделать вывод о том, что объект автоматизации является вполне управляемым, т.е. для него имеется такое управляющее воздействие u ( t ), которое способно перевести на интервале времени [ to , tk ] объект из любого начального состояния у ( to ) в произвольное заранее заданное конечное состояние y ( tk ).
При синтезе оптимальных систем с обратной связью сами управления получаются как функции от фазовых координат. В общем случае фазовые координаты являются абстрактными величинами и не могут быть исследованы. Поддается измерению (наблюдению) вектор у = (у1 , ..., yk ) T , который обычно называют выходным вектором или выходной переменной, а его координаты - выходными величинами. Выходная переменная функционально связана с фазовыми координатами, и для реализации управления с обратной связью необходимо определить фазовые координаты по измеренным значениям выходной переменной. В связи с этим возникает проблема наблюдаемости, заключающаяся в установлении возможности состояния определения состояния объекта (фазового вектора) по измеренным значениям выходной переменной на некотором интервале.
Решение проблемы наблюдаемости основано на анализе уравнений переменных состояния и формулируется следующим образом: объект называется вполне наблюдаемым, если по реакции y ( tk ) на выходе объекта, на интервале времени [ t 0 , tk ] при заданном управляющем воздействии u ( t ) можно определить начальное состояние вектора переменных состояния x ( t ), являющихся фазовыми координатами объекта.
Критерием наблюдаемости линейных стационарных объектов является условие: для того, чтобы объект был вполне наблюдаемым, необходимо и достаточно, чтобы ранг матрицы наблюдаемости
My = ( СТ АТ СТ ( АТ )2 СТ ... (AT )n-1C)
равнялся размерности вектора состояния
п = rangMY .
Определим матрицу наблюдаемости:
>> My=obsv(A,C)
My =
0.0702 -0.0969 0.0662
-0.1355 0.0233 -0.0013
0.0978 0.0182 0.0025
Определим ранг матрицы наблюдаемости:
>> n2=rank(My)
n2 =
3
Таким образом, для исследуемой модели объекта размерность вектора состояний, определяемая размером матриц А и С равна трем и ранг матрицы наблюдаемости MY также равен трем, что позволяет сделать вывод о том, что объект автоматизации является вполне наблюдаемым, т.е. для него всегда можно определить по, значениям выходной величины y ( t ) вектор переменных состояния, необходимый для синтеза системы управления.
2.2 Обоснование выбора типа регулятора
Для того, чтобы правильно выбрать необходимый тип вносимого в систему регулятора, исследуем переходный процесс объекта управления на основании передаточной функции W ( p ) ТОУ полученной в предыдущем разделе. Построим функциональную схему в SIMULINK и с помощью LTI получим переходную характеристику объекта управления:
Рисунок 2.2.1 Схема моделирования САР в SIMULINK
Рисунок 2.2.2 Переходная характеристика ТОУ
По виду переходной характеристики можно сказать, что имеющиеся показатели точности и качества нас не удовлетворяют:
· время регулирования составляет 42.1 с.
· статическая ошибка составляет 83 %.
Для обеспечения заданных показателей качества и точности переходного процесса, а также выполнения требований по запасам устойчивости необходимо введение в систему линейного регулятора.
Очевидно, что статическую ошибку данной системы не получится устранить введением только регулятора, в связи с очень большим коэффициентом передачи датчика обратной связи. Необходимо, ввести последовательно с датчиком обратной связи звено, которое обеспечивало бы, коэффициент передачи по цепи обратной связи равный 1, т.е. установить нормирующий преобразователь с передаточной функцией: